Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Ping Wu x
  • User-accessible content x
Clear All Modify Search
Free access

Li Li, Xiulan Xu, Ping Wu, Guo Zhang, and Xiaobing Zhang

Twenty-four representative melon varieties and six parental cultivars were examined in this study. Among 159 pairs of simple sequence repeat (SSR) primers, 18 SSR core primers with rich polymorphic information, a large number of genotypes, and the ability to distinguish different melon varieties were selected. A total of 113 genotypes were detected among the 30 experimental materials, with an average of 6.28 genotypes for each pair of primers. The polymorphic information content was on average 0.6807, ranging from 0.5618 to 0.7885. Specific bands of the primers for the 30 experimental materials were analyzed, and by combining different primer loci, all 30 varieties were identified. Unique barcodes for molecular identity cards for the 30 experimental materials were established using the fingerprints formed with this SSR marker system. Each variety has a unique identity card that can be applied for the registration of the newly bred varieties, the protection of breeders’ rights, and the authenticity of breeds after promulgation of the new Seed Law of the People’s Republic of China.

Free access

Li Li, Ling Liu, Deshuang Zhang, Ping Wu, Fenglan Zhang, and Xiulan Xu

Thirteen Chinese cabbage (Brassica rapa) hybrid cultivars and 26 parental inbred lines were used as experimental materials to screen for primers producing hybrid and parental complementary bands and for primers with high polymorphism information contents and low genotype frequencies. A total of 18 pairs of core primers were designed to identify the purity of Chinese cabbage. There was no significant difference in the purity percentage measured between different loci of the same strain. The fingerprint obtained by the amplification of each locus could be used to identify purity to obtain an authentic purity percentage. Curve mapping and significance analyses were conducted using the purity percentage of eight different seed samples and confirmed a sampling seed number of 96. The results of the purity test were verified by comparison with the grow-out test (GOT) using molecular markers. In conclusion, the simple sequence repeat (SSR) detection system could be used for the rapid identification of the purity of the tested Chinese cabbage hybrids.

Open access

Guoqiang Wang, Ping Qu, Hongying Huang, Guofeng Wu, and Haijun Yan

To produce a firm and cohesive root plug to promote automated transplanting of nursery-grown seedlings, hydrolyzed soy protein-modified urea–formaldehyde (H-UF) resins were used to bind renewable substrate [mixture of coconut (Cocos nucifera) coir dust, coconut fiber, organic manure, perlite, vermiculite]. The resulting substrate block showed high density and nutrient concentrations in the peripheral portion and relatively low density and nutrient levels in the center. The porosity of the H-UF/substrate block was slightly lower than that of standard substrate. The electrical conductivity and pH were beneficial for germination and early seedling development. The modified resins in the substrate block existed in the form of spheres that adhered to each other and formed a porous structure from nano- to micrometer scale. In particular, the H-UF/substrate block increased the seedling height, stem diameter, root length, and leaf area of ‘Sujiao No. 5’ pepper (Capsicum annum) seedlings by 56.07%, 43.33%, 1.33%, and 89.63%, respectively, compared with those of seedlings grown in substrate without H-UF resin. The contents of nitrogen, phosphorus, and potassium in the shoot and root of pepper seedlings grown in H-UF/substrate blocks were enhanced by 39% to 69% compared with those of seedlings grown in standard substrate. The compressive strength of the H-UF/substrate block was 3.6-fold higher than that of substrate when 50% resin was added to the substrate. The results indicated that a combination of the substrate with the modified resin was suitable as a growth substrate for nursery production of pepper seedling plugs.

Free access

Jiang-Chong Wu, Jing Yang, Zhi-Jian Gu, and Yan-Ping Zhang

By using a modified biotin-streptavidin capturing method, a total of 20 polymorphic microsatellite markers were developed from Moringa oleifera Lam. (Moringaceae), a useful multipurpose tree. Twenty-four domesticated individuals, with germplasms of India and Myanmar, were used to screen polymorphism of these 20 microsatellite markers. The number of alleles per locus ranged from two to six. The expected and observed heterozygosity varied from 0.3608 to 0.7606 and from 0.0000 to 0.8750, respectively. Seven loci were significantly deviated from Hardy-Weinberg equilibrium. The availability of these microsatellite primers would provide a powerful tool for aspects of detailed population genetic studies of M. oleifera.

Free access

Li-Qiang Tan, Xin-Yu Wang, Hui Li, Guan-Qun Liu, Yao Zou, Shen-Xiang Chen, Ping-Wu Li, and Qian Tang

Landrace tea populations are important recourses for germplasm conservation and selection of elite tea clone cultivars. To understand their genetic diversity and use them effectively for breeding, two traditional landrace tea populations, Beichuan Taizicha (BCTZ) and Nanjiang Dayecha (NJDY), localized to northern Sichuan, were evaluated for morphological characters, simple sequence repeat (SSR)–based DNA markers and the contents of biochemical components. A wide range of morphological variation and a moderately high level of DNA polymorphism were observed from both BCTZ and NJDY. NJDY had on average, bigger leaves, larger flowers, higher total catechins (TCs), and greater gene diversity (GD) than BCTZ. Interestingly, samples from BCTZ had a wide range in the ratio of galloylated catechins to nongalloylated catechins (G/NG) (1.83–8.12, cv = 48.8%), whereas samples from NJDY were more variable in total amino acid (TAA) content (25.3–50.8 mg·g−1 dry weight) than those from BCTZ. We concluded that the two Camellia sinensis landrace populations are of great interest for both individual selection breeding and scientific studies.

Full access

Cui-ping Hua, Zhong-kui Xie, Zhi-jiang Wu, Yu-bao Zhang, Zhi-hong Guo, Yang Qiu, Le Wang, and Ya-jun Wang

The autotoxicity of root exudates and the change of rhizosphere soil microbes are two important factors that affect the quality and yield of Lanzhou lily (Lilium davidii var. unicolor). Phthalic acid (PA) is a major autotoxin of the root exudates in Lanzhou lily. In this study, we treated plants with different concentrations of PA from the Lanzhou lily root exudates and then analyzed the effects of autotoxins on fresh weight, shoot height, root length, and Oxygen Radical Absorbance Capacity in root. The diversity of soil fungi in Lanzhou lily soil was analyzed using MiSeq. The results showed that PA induced oxidative stress and oxidative damage of Lanzhou lily roots, improved the level of the membrane lipid peroxidation, reduced the content of antioxidant defense enzyme activity and the nonenzymatic antioxidant, and eventually inhibited the growth of the Lanzhou lily. We found that continuous cropping of Lanzhou lily resulted in an increase in fungal pathogens, such as Fusarium oxysporum in the soil, and reduced the size of plant-beneficial bacteria populations. The results in this study indicate that continuous cropping would damage the regular growth of Lanzhou lily.