Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Michael L. Flessner x
  • User-accessible content x
Clear All Modify Search
Full access

Ethan T. Parker, J. Scott McElroy and Michael L. Flessner

Smooth crabgrass (Digitaria ischaemum) and goosegrass (Eleusine indica) are problematic weeds in creeping bentgrass (Agrostis stolonifera) because of limited herbicide options for postemergence (POST) control and turfgrass injury potential. Metamifop is a herbicide currently being considered for release to markets in the United States but information is lacking on the most effective rates and application timings for smooth crabgrass and goosegrass control in creeping bentgrass. Field trials were conducted in Auburn, AL in 2009 and 2013 to evaluate metamifop rates (200 to 800 g·ha−1) and single or sequential application timings compared with fenoxaprop (51 to 200 g·ha−1) at two different mowing heights. Metamifop applied twice and three times sequentially at 200 g·ha−1 provided the greatest smooth crabgrass (>97%) and goosegrass (>90%) control at rough (1½ inch) and green (1/8 inch) mowing heights without unacceptable creeping bentgrass injury at 56 days after initial treatment. All treatments caused <20% visible injury on creeping bentgrass at both mowing heights except the highest rate of metamifop. Smooth crabgrass control at the green mowing height was greater than at the rough mowing height, especially at lower metamifop rates with a single application.

Full access

J. Scott McElroy, James D. McCurdy and Michael L. Flessner

Centipedegrass (Eremochloa ophiuroides) is a low-maintenance, warm-season grass common throughout the southern United States. Slow establishment and growth rate of seeded centipedegrass often allows for increased weed competition, yet weed control options are limited. Tank-mixing simazine with mesotrione has been reported to improve weed control because of synergistic modes of action. A 2-year field trial was conducted to evaluate centipedegrass response to mesotrione and simazine applications applied 2 weeks after emergence. Mesotrione (0.25 lb/acre) did not reduce centipedegrass cover at any rating when applied alone. All rates of simazine, alone and tank-mixed with mesotrione, resulted in decreased centipedegrass cover 7 days after treatment (DAT). However, simazine alone at 0.25 lb/acre did not reduce turf cover 14, 28, and 49 DAT, and simazine at 0.25 lb/acre tank-mixed with mesotrione at 0.25 lb/acre did not reduce turf cover 28 and 49 DAT. Results indicate that newly established centipedegrass is vulnerable to cover reduction because of simazine and simazine plus mesotrione tank-mixture. Mesotrione and mesotrione tank-mixed with low rates of simazine is a viable option for newly seeded centipedegrass weed control; however, turf cover may be delayed.

Open access

J. Harrison Ferebee IV, Charles W. Cahoon, Michael L. Flessner, David B. Langston, Ramon Arancibia, Thomas E. Hines, Hunter B. Blake and M. Carter Askew

Chemical desiccants are commonly used to regulate tuber size, strengthen skin, and facilitate harvest for potato (Solanum tuberosum) production. Glufosinate is labeled for potato vine desiccation; however, limited data are available. Saflufenacil, a protoporphyrinogen oxidase–inhibiting herbicide, is an effective desiccant in other crops. Field research was conducted to evaluate glufosinate and saflufenacil as desiccants applied to ‘Dark Red Norland’ potato. Desiccants consisted of diquat, glufosinate, saflufenacil, glufosinate plus carfentrazone, and glufosinate plus saflufenacil applied at three timings, DESIC-1, DESIC-2, and DESIC-3, when size B potatoes averaged 43%, 31%, and 17% of total potato weight. Potato vine desiccation was more difficult at DESIC-1 and DESIC-2 because of immature vines. Diquat was the most effective desiccant 7 days after treatment (DAT), desiccating potato vines 88% at DESIC-1 7 DAT. Glufosinate alone desiccated potato vines 65% at the same timing; however, carfentrazone and saflufenacil added to glufosinate increased vine desiccation 8% and 16% compared with glufosinate alone, respectively. Vine desiccation by all treatments ranged 99% to 100% at 14 DAT. Desiccant and timing effects on skin set were determined using a torque meter before harvest. Skin set resulting from all desiccants and timings ranged between 1.88 and 2 lb-inch, and no significant differences were observed. No significant differences in yield were noted among desiccants. This research indicates that glufosinate and saflufenacil are suitable alternatives to diquat for potato vine desiccation; however, safety of saflufenacil applied to potatoes before harvest has not been determined.