Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: Mark J. Bassett x
  • HortScience x
Clear All Modify Search
Author:

The inheritance of two new induced mutations for spindly branch was investigated in common bean (Phaseolus vulgaris L.). Each mutant was found to be controlled by a recessive gene. Allelism tests were performed beween a previously reported spindly branch mutant (sb) and the two new spindly branch mutants; the new mutants were found to be nonallelic to sb and to each other. The gene symbols sb-2 and sb-3 are proposed for the new mutants. Repulsion phase F2 linkage tests were made for all nine combinations of reclining foliage (rf) and sb among the two mimic mutant series rf, rf-2, rf-3 and sb, sb-2, sb-3. No linkages were detected.

Free access
Author:

A cross was made between gri (gray-white seedcoat) and p (pure-white seedcoat) using genetic stocks gri BC2 5-593 and p BC2 5-593 developed to carry only a single recessive allele for seedcoat color in an otherwise all-dominant genetic background. The recurrent parent, 5-593, is a Florida dry-bean breeding line with bishops-violet flowers, determinate habit, small seed size, shiny black seeds, and seedcoat genotype T Mar P [C r] D J G B V Rk. The F1 progeny from the above cross between gri and p had the flower color pattern and seedcoat color of the griseoalbus character (gri), but had less intense color expression. Therefore, I hypothesized that gri is an allele at the P locus (allelic interaction). The hypothesis of allelism was confirmed in the F2, which failed to segregate for bishops-violet flowers and black seed, i.e., no complementation was evident. The symbol p gri is proposed for the new allele at P, where the dominance series is P > p gri > p. The gene for gray-white seeds in gri BC2 5-593 was shown to be allelic to Lamprecht's gri gene in V0059 (PI 527716).

Free access
Author:

The effects of gri on seed coat and flower color were investigated in a study using Lamprecht line V0400 (PI 527735) as the known source of gri. Seed and flower color data were taken on observations of F2, BC1-F2, and BC2,-F2 populations from crosses of V0400 with the recurrent parent S-593. Segregation was observed for a unique flower color pattern: wing petals have a very pale tinge of blue (laelia), and the banner petal has two violet dots (≈3- to 4-mm diameter) on a nearly white background. This very pale laelia flower color cosegregates with gray-white seed coats produced by gri. Furthermore, the very pale laelia color depends on the action of V for expression and is extinguished by v, which produces pure white flowers. Thus, it was demonstrated that the very pale laelia flower color, for which Lamprecht tentatively proposed the gene symbol vpal, is not controlled by an allele at V but is a pleiotropic effect of gri. It was also demonstrated that Lamprecht line V0060 (PI 527717) carries vlae, not v, as indicated by the genotypic notes accompanying the Lamprecht seed collection.

Free access
Author:

Studying the genetics of seedcoat color in common bean (Phaseolus vulgaris L.) in F2 progenies is very difficult because of complex epistatic interactions, and the analysis is complicated further by multiple allelism, especially at the C locus. An alternative approach is to study seedcoat genetics by analyzing the F1 progeny of test crosses between a variety with unknown seedcoat genotype and genetic tester stocks with known genotypes. Twenty varieties, 18 with known genotype at C, were test crossed with the genetic tester stock c u BC3 5-593, where 5-593 is a recurrent parent with seedcoat genotype P [C r] D J G B V Rk. The resulting F1 progenies were classified into seven phenotypic classes and discussed. The crosses g B v BC3 5-593 × c u BC3 5-593 and c u BC3 5-593 × v BC3 5-593 were made and the F2 progeny classified for flower color and seedcoat color and pattern. No tiny cartridge buff flecks were observed in the segregants with C/c u v/v, whereas C/c u V/- always showed such flecks. The contrasting seedcoat color expression at C in different environmental conditions is discussed.

Free access
Author:

Anecdotal evidence exists for nonflatulence among Chilean Manteca and Coscorrón market classes of common bean (Phaseolus vulgaris L.), and there is an hypothesis that the seedcoat color may be associated with superior digestibility. The inheritance of seedcoat color in `Prim', a Manteca market-class dry bean, was investigated using a protocol employing genetic interpretation of seedcoat colors in the F1 from testcrosses of `Prim' with a series of tester stocks. Most of the genetic tester stocks were constructed previously by backcrossing selected recessive alleles for seedcoat color into a recurrent parent (5-593) with seedcoat color genotype P [C r] D J G B V Rk Asp. The genetic tester stocks included two varieties, `Masterpiece' and `V0687', and testers constructed on the 5-593 background, viz., j BC2 5-593, d j BC2 5-593, asp BC2 5-593, b v BC2 5-593, v BC2 5-593, and c u BC3 5-593. The seedcoat color genotype of `Prim' was found to be P [C r] d j G b v lae. The implications of this genotype for pigment chemistry are discussed.

Free access
Author:

Abstract

In strain gauge tests of sieve size 4 pods of snap bean (Phaseolus vulgaris L.), ‘Idelight’ and ‘Green Isle’ required the lowest pod detachment force (PDF) of 13 genotypes tested.

Open Access

Dry seed of the common bean (Phaseolus vulgaris L.) breeding line S-593 was treated with 200 Gy of gamma radiation, and M2 seed was produced. The seed was planted at Prosser, Wash., and selection was made for plants with greatly reduced seed set. The inheritance of one of the selections for possible male sterility mutation was studied in F2, F3, and backcross generations. This character is controlled by a single recessive gene, for which the symbol ms-1 is proposed. Plants carrying ms-l/ms-1 produce well-filled pods after manual pollination with pollen from normal plants, but produce no seed when protected from insect pollination in greenhouse and field environments. Uses for this mutant are discussed.

Free access

Abstract

Two new mutants for the reclining foliage (RF) character were induced by treating seed of dry bean (Phaseolus vulgaris L.) breeding lines B-351 and 182-1 with 20 krad of γ-radiation. These two mutants were shown to be monogenic and recessive. Allelism tests between the common RF gene rf and the two new mimic mutants for RF indicated that each of the three mutants has an independent locus. The symbols rf2 and rf3 were given to the new mutants. F2 data from the allelism tests showed that the rf2 stock carries a recessive epistatic gene i that does not affect rf2 but suppresses expression of rf and rf3. The rf locus was shown to be independent of the Sur locus for RF in linkage group VII.

Open Access

Nitrogen is required for successful carrot production on sandy soils of the southeastern United States, yet carrot growers often apply N in amounts exceeding university recommendations. Excessive fertilization is practiced to compensate for losses of N from leaching and because some growers believe that high rates of fertilization improve vegetable quality. Carrots (Daucus carota L.) were grown in three plantings during Winter 1994–95 in Gainesville, Fla., to test the effects of N fertilization on yield and quality. Yield increased with N fertilization but the effect of N rate depended on planting date; 150 kg·ha–1 N maximized yield for November and December plantings but 180 kg·ha–1 N was sufficient for the January planting. Concentration of total alcohol-soluble sugar was maximized at 45 mg·g–1 fresh root with 140 kg·ha–1 N for `Choctaw' carrots, whereas sugar concentration of `Scarlet Nantes' roots was not affected by N fertilization. Carrot root carotenoid concentration was maximized at 55 mg·kg–1 fresh root tissue with 160 kg·ha–1 N. Generally, those N fertilization rates that maximized carrot root yield also maximized carrot quality as determined by sugar and carotenoid concentrations.

Free access