Search Results

You are looking at 1 - 10 of 49 items for

  • Author or Editor: Mark J. Bassett x
  • User-accessible content x
Clear All Modify Search
Free access

Mark J. Bassett

The inheritance of two new induced mutations for spindly branch was investigated in common bean (Phaseolus vulgaris L.). Each mutant was found to be controlled by a recessive gene. Allelism tests were performed beween a previously reported spindly branch mutant (sb) and the two new spindly branch mutants; the new mutants were found to be nonallelic to sb and to each other. The gene symbols sb-2 and sb-3 are proposed for the new mutants. Repulsion phase F2 linkage tests were made for all nine combinations of reclining foliage (rf) and sb among the two mimic mutant series rf, rf-2, rf-3 and sb, sb-2, sb-3. No linkages were detected.

Free access

Mark J. Bassett

The effects of gri on seed coat and flower color were investigated in a study using Lamprecht line V0400 (PI 527735) as the known source of gri. Seed and flower color data were taken on observations of F2, BC1-F2, and BC2,-F2 populations from crosses of V0400 with the recurrent parent S-593. Segregation was observed for a unique flower color pattern: wing petals have a very pale tinge of blue (laelia), and the banner petal has two violet dots (≈3- to 4-mm diameter) on a nearly white background. This very pale laelia flower color cosegregates with gray-white seed coats produced by gri. Furthermore, the very pale laelia color depends on the action of V for expression and is extinguished by v, which produces pure white flowers. Thus, it was demonstrated that the very pale laelia flower color, for which Lamprecht tentatively proposed the gene symbol vpal, is not controlled by an allele at V but is a pleiotropic effect of gri. It was also demonstrated that Lamprecht line V0060 (PI 527717) carries vlae, not v, as indicated by the genotypic notes accompanying the Lamprecht seed collection.

Free access

Mark J. Bassett

A cross was made between gri (gray-white seedcoat) and p (pure-white seedcoat) using genetic stocks gri BC2 5-593 and p BC2 5-593 developed to carry only a single recessive allele for seedcoat color in an otherwise all-dominant genetic background. The recurrent parent, 5-593, is a Florida dry-bean breeding line with bishops-violet flowers, determinate habit, small seed size, shiny black seeds, and seedcoat genotype T Mar P [C r] D J G B V Rk. The F1 progeny from the above cross between gri and p had the flower color pattern and seedcoat color of the griseoalbus character (gri), but had less intense color expression. Therefore, I hypothesized that gri is an allele at the P locus (allelic interaction). The hypothesis of allelism was confirmed in the F2, which failed to segregate for bishops-violet flowers and black seed, i.e., no complementation was evident. The symbol p gri is proposed for the new allele at P, where the dominance series is P > p gri > p. The gene for gray-white seeds in gri BC2 5-593 was shown to be allelic to Lamprecht's gri gene in V0059 (PI 527716).

Free access

Mark J. Bassett

Studying the genetics of seedcoat color in common bean (Phaseolus vulgaris L.) in F2 progenies is very difficult because of complex epistatic interactions, and the analysis is complicated further by multiple allelism, especially at the C locus. An alternative approach is to study seedcoat genetics by analyzing the F1 progeny of test crosses between a variety with unknown seedcoat genotype and genetic tester stocks with known genotypes. Twenty varieties, 18 with known genotype at C, were test crossed with the genetic tester stock c u BC3 5-593, where 5-593 is a recurrent parent with seedcoat genotype P [C r] D J G B V Rk. The resulting F1 progenies were classified into seven phenotypic classes and discussed. The crosses g B v BC3 5-593 × c u BC3 5-593 and c u BC3 5-593 × v BC3 5-593 were made and the F2 progeny classified for flower color and seedcoat color and pattern. No tiny cartridge buff flecks were observed in the segregants with C/c u v/v, whereas C/c u V/- always showed such flecks. The contrasting seedcoat color expression at C in different environmental conditions is discussed.

Free access

Mark J. Bassett

Anecdotal evidence exists for nonflatulence among Chilean Manteca and Coscorrón market classes of common bean (Phaseolus vulgaris L.), and there is an hypothesis that the seedcoat color may be associated with superior digestibility. The inheritance of seedcoat color in `Prim', a Manteca market-class dry bean, was investigated using a protocol employing genetic interpretation of seedcoat colors in the F1 from testcrosses of `Prim' with a series of tester stocks. Most of the genetic tester stocks were constructed previously by backcrossing selected recessive alleles for seedcoat color into a recurrent parent (5-593) with seedcoat color genotype P [C r] D J G B V Rk Asp. The genetic tester stocks included two varieties, `Masterpiece' and `V0687', and testers constructed on the 5-593 background, viz., j BC2 5-593, d j BC2 5-593, asp BC2 5-593, b v BC2 5-593, v BC2 5-593, and c u BC3 5-593. The seedcoat color genotype of `Prim' was found to be P [C r] d j G b v lae. The implications of this genotype for pigment chemistry are discussed.

Free access

Mark J. Bassett

The red common bean (Phaseolus vulgaris L.) seedcoat colors produced by the dominant gene R and the dark red kidney gene rk d are very similar, making it difficult for breeders of red bean varieties to know which genotype is in their materials. A protocol employing test crosses with genetic stocks having known genotypes for seedcoat colors was developed to identify genotypes with either of two very similar dark red seedcoat colors: garnet brown controlled by rk d and oxblood controlled by R. Twenty bean varieties and breeding lines were test crossed with genetic tester stocks c u BC3 5-593 and b v BC3 5-593, and four of the varieties were test crossed with [? R] b v BC3 5-593. Analysis of the seedcoat colors and patterns in the F1 progenies from the test crosses demonstrated that unambiguous identification of the genotypes of the two dark red colors could be achieved using the c u BC3 5-593 and b v BC3 5-593 testers. The dark red color (garnet brown) of the Small Red market class materials was demonstrated to be produced by rk d, and the dark red color (oxblood) of `Jacobs Cattle' was demonstrated to be produced by R. A Light Red Kidney market class stock was derived from `Redkloud' and used in two crosses: c u b v rk BC1 5-593 × b v BC3 5-593 and c u b v rk BC1 5-593 × c u BC3 5-593. Classification of the F2 progenies demonstrated that the c u gene does not entirely prevent rk red color from being modified by V. The interactions of rk, rk d, and R with C, c u, G, B, and V are discussed, and previous literature concerning those interactions is critically reviewed.

Free access

Mark J. Bassett

A new gene for flower color pattern, designated white banner (WB), appeared in material derived from the cross `Harvester' snap bean (Phaseolus vulgaris L.) × Plant Introduction (PI) accession 273666 of scarlet runner bean (P. coccineus L.). The WB character has a white banner petal and pale violet wings (veronica-violet 639/2). The inheritance of the mutant was studied in crosses involving dry bean breeding line 5-593, which has bishops-violet (wild-type) flowers, and genetic stocks v BC2 5-593 (white flowers) and blu BC2 5-593 (blue flowers). Segregation in F2 and F3 progenies from the cross v BC2 5-593 × WB supported the hypothesis that WB is controlled by a single recessive gene that is nonallelic with the V locus. An allelism test with blu BC2 5-593 gave evidence that WB is not allelic with the blu locus. The gene symbol wb is proposed for the gene producing WB.

Free access

Mark J. Bassett

Plant Introduction (PI) accession 507984 of common bean (Phaseolus vulgaris L.) has partly colored seed coats and either pure white flowers or light laelia flowers. Crosses were made with white-flowered plants of PI 507984: white-flowered plant #1 × the genetic stock t ers ers2 BC2 5-593 and white-flowered plant #2 × recurrent parent dry bean breeding line 5-593. Inheritance was studied in the F1, F2, and F3 of the former cross and the F1 and F2 of the latter cross. PI 507984 (white flower, plant #1) × t ers ers2 BC2 5-593 gave F1 plants with colored flowers and partly colored seeds. The F2 gave a 9:7 segregation ratio (colored flowers to white flowers), and the genetic model proposed is that flower color is restored in the presence of t/t by two complementary genes, Fcr and Fcr-2. That model was confirmed by F3 progeny tests of 21 F2 parents with colored flowers. The cross PI 507984 (white flower, plant #2) × 5-593 gave an F2 segregation ratio of 9:3:4 (bishops-violet: light laelia: white flowers), indicating that the white-flowered PI 507984 has v lae masked by t. Analysis of all the data suggests that PI 507984 is heterogeneous at Fcr and Fcr-2, having all three possible homozygous genotypes, viz., either light laelia flowers from v lae t Fcr Fcr-2 or white flowers from v lae t Fcr fcr-2 or v lae t fcr Fcr-2. The flower color restoration gene in 5-593 is arbitrarily assigned the symbol Fcr. Great variability occurs in partly colored seeds of PI 507984 due to the environment in which the seed was produced.

Free access

Mark J. Bassett

Crosses were made with two common bean (Phaseolus vulgaris L.) parents that have pink flowers (v lae/-) and mineral-brown seedcoats with dark corona, viz., v lae BC3 5-593 (derived from Lamprecht V0491) and F3 v lae dark corona (derived from Lamprecht M0048). The third parent v BC2 5-593 had white flowers (v/v) and mineral-brown seedcoats without dark corona (derived from Lamprecht M0056). The F2 progenies of the crosses v BC2 5-593 × v lae BC3 5-593 and F3vlae dark corona × v BC2 5-593 segregated for only two phenotypic classes: either pink flowers and seeds with dark corona or white flowers and seeds without dark corona. Thus, it was demonstrated that the dark corona character (Cor) is either tightly linked to vlae (<4 map units) or is a pleiotropic effect of vlae. Pleiotropy is more probable, but tight linkage cannot be ruled out. A linkage of 15 map units between Cor and R (currently, R is known to be tightly linked with C) reported by Lamprecht was not found by subsequent authors, and the linkage map of common bean should be revised accordingly, i.e., no linkage exists between V (Cor) and C.

Free access

Mark J. Bassett

Common bean (Phaseolus vulgaris L.) seedcoats can have partly colored patterns such as the new two-points pattern, which has an unknown genotype. The gene t cf (derived from PI 507984) expresses partly colored seedcoat pattern with colored flowers. A genetic tester stock t cf two-points BC3 5-593 was derived from PI 507984 by backcrossing to the recurrent parent, Florida dry bean breeding line 5-593, which has black self-colored seeds and purple flowers due to the genotype T P V. A series of test crosses were made between t cf two-points BC3 5-593 and three genetic tester stocks: t z j ers white BC3 5-593, t z bip bipunctata BC3 5-593, and t z virgarcus BC3 5-593. All three test crosses were studied in F1 and F2 populations, and the latter test cross in F3 progenies derived from 80 randomly selected F2 plants. The two-points pattern was never observed with white flower plants expressed by t/t, supporting the hypothesis that tcf is necessary for two-points expression. The complete genotype for two-points was found to be t cf z j ers. The t cf gene expresses more extensive colored zones in partly colored seedcoats than t. For example, t cf z J expresses self-colored seedcoats, whereas t cf/t z J expresses white ends pattern and t z J expresses virgarcus. Similarly, the t cf z j ers genotype expresses two-points pattern, whereas t z j ers expresses white seedcoat; and t cf/-z J/j ers expresses PI type pattern, whereas t z J/j ers expresses weak virgarcus pattern.