Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Lisa W. DeVetter x
  • User-accessible content x
Clear All Modify Search
Full access

Lisa W. DeVetter, David Granatstein, Elizabeth Kirby and Michael Brady

Global production of highbush blueberry (Vaccinium corymbosum) has continuously increased since the early 1990s, with substantial growth occurring after 2000. Benefiting from this growth is the organic blueberry (Vaccinium sp.) industry, which has been strengthened by increases in organic food sales and the price premiums received for organic products. Washington State is a national and global leader in organic blueberry production, with 47% of the national organic blueberry crop harvested in 2008. As this statewide industry continues to grow, it is important to recognize both the opportunities and challenges related to organic blueberry production and marketing. This paper addresses those issues and describes trends in organic highbush blueberry production using Washington State as a case study due to its scale and distinctive regional differences within the state in regard to climate, horticultural production, and market venues. Challenges related to the introduction and management of new diseases and pests, changes in the federal organic regulations, infrastructural limitations, and climate change threaten current production capabilities in Washington State. However, the industry is still poised to capitalize on organic blueberry markets and has a lower market risk in the medium term compared with other crops.

Restricted access

Lisa W. DeVetter, Sean Watkinson, Ramesh Sagili and Timothy Lawrence

Commercial production of northern highbush blueberry (Vaccinium corymbosum) is dependent upon rented colonies of honey bees (Apis mellifera) for meeting pollination requirements. Despite the prevalent use of honey bees, growers in Washington State and the greater Pacific Northwest (PNW), particularly those located in the western regions, claim pollination is limited and yield potential is subsequently reduced due to pollination deficits. However, there have been no studies or surveys that document this occurrence for this economically important region of blueberry production. The objective of this study was to survey honey bee activity in commercial plantings of ‘Duke’ highbush blueberry in western and eastern Washington and to assess the relationship between honey bee activity, growing region, and select yield components. Honey bee colony strength was also assessed to evaluate this variable’s relationship to honey bee activity and measured yield components. Sixteen and 18 commercial ‘Duke’ blueberry fields across Washington State were surveyed in 2014 and 2015, respectively. Average number of honey bee visitations per plant and honey bee colony strength were determined to evaluate overall honey bee activity. Estimated yield, berry number per plant, berry size (mass), and seed number per berry were also determined and analyzed to determine their relationship to honey bee activity through regression analysis. Honey bee visitation rates differed between western and eastern Washington, with western Washington sites consistently below recommended honey bee densities. Colony strength was also below recommended levels, but was lower for western Washington relative to eastern Washington. Estimated yield and berry number differed across sites and years, but were not related to honey bee visitation rates. Regression analysis revealed few significant relationships, although honey bee visitation rates were positively related to seed number per berry and seed number was positively related to berry size (R 2 = 0.25 and 0.16, respectively). Berry size was also positively related to colony strength (R 2 = 0.63). This study demonstrates that honey bee activity is limited in Washington blueberry production, particularly in western Washington, when compared with recommendations for optimal honey bee activity in blueberry. However, yields were unaffected between the compared regions. The lack of a relationship between honey bee visitation rates and yields suggests that pollination is sufficient for ‘Duke’ blueberry in Washington State and pollination deficits do not limit yield for this cultivar under the conditions of the study.

Full access

Rachel E. Rudolph, Thomas W. Walters, Lisa W. DeVetter and Inga A. Zasada

One of the primary production challenges red raspberry (Rubus idaeus) growers in the Pacific northwestern United States confront is root lesion nematode [RLN (Pratylenchus penetrans)]. In this perennial production system, red raspberry serves as a sustained host for RLN. When a red raspberry planting is slated for removal in the fall, a new red raspberry planting quickly follows in the same field the following spring. The primary crop that occurs in rotation with red raspberry is a winter wheat cover crop to provide soil coverage and protection during the winter. The objectives of this research were to determine if winter wheat (Triticum aestivum) provides a green bridge for RLN in continuous red raspberry production systems and to determine if modified winter cover cropping practices can be used to reduce population densities of RLN before replanting red raspberry. Four trials were established in fields being replanted to red raspberry and the following modified winter cover cropping practices were considered: cover crop planting date (at fumigation or 2 weeks after fumigation), termination date (cover crop kill with herbicide 2 or 6 weeks before incorporation compared with the industry standard of incorporation immediately before planting), and the additional application of methomyl. ‘Rosalyn’ and ‘Bobtail’ winter wheat planted as cover crops in these trials were demonstrated to be maintenance hosts for RLN (ranging from 10 to 947 RLN/g winter wheat root across trials) allowing them to be a green bridge for RLN to infect the following red raspberry crop. Altering winter wheat cover crop planting date, termination date with herbicide, or methomyl application did not affect RLN population densities in the subsequent red raspberry crop. Although planting an RLN maintenance host may be of concern to growers, the advantages of reduced soil erosion and nitrate leaching associated with cover cropping outweigh the perceived risk to the subsequent red raspberry crop.

Restricted access

Lisa W. DeVetter, Huan Zhang, Shuresh Ghimire, Sean Watkinson and Carol A. Miles

Day-neutral strawberry (Fragaria ×ananassa) is typically grown in plasticulture production systems that use black polyethylene (PE) mulch for weed management and promotion of crop growth and yield. The objectives of this research were to evaluate several commercial plastic and paper biodegradable mulch (BDM) products [Bio360, Experimental Prototype (Exp. Prototype), and WeedGuardPlus] in comparison with standard black PE mulch and bare ground cultivation in day-neutral strawberry grown in an annual system in northwestern Washington. Mulch performance [as percent visual cover (PVC)], weed suppression, marketable yield, plant biomass, and fruit quality were evaluated in ‘Albion’ and ‘Seascape’ strawberry grown in 2014 and 2015. PVC measured at the end of the production season was lowest for the Exp. Prototype (8%) in 2014 and was greatest for Bio360 (90%), WeedGuardPlus (90%), and PE (98%). In 2015, PVC at the end of the production season was again lowest for Exp. Prototype (62%), followed by WeedGuardPlus (64%), Bio360 (93%), and PE mulch (97%). Overall, weed pressure was higher in 2015 relative to 2014 and was greatest in the bare ground treatment in both years of the study. By the end of the 2015 season, weed cover in the bare ground treatment was 95%, followed by WeedGuardPlus (50%), Exp. Prototype (34%), PE (25%), and Bio360 (15%). Yield showed year and cultivar effects and was higher in mulched treatments. Plant biomass showed varying effects; root biomass was lowest in ‘Seascape’ in 2015 under the bare ground treatment and greatest under Bio360, which was similar to PE mulch and WeedGuardPlus. Leaf biomass was lowest in the bare ground treatment and highest in mulched treatments (except in 2015, when leaf biomass was intermediate for plants grown with WeedGuardPlus). Crown biomass showed a similar trend and was overall greater for plants grown in mulched treatments except for Bio360 in 2014, which was the same as the bare ground treatment. Overall, fruit quality was maintained among strawberry grown with BDMs, with soluble solids concentration (SSC, %) and titratable acidity (TA) being the only variables to show treatment effects. SCC tended to be lower in fruit from bare ground plots. TA was different for ‘Seascape’ in 2015 with fruit from bare ground and Exp. Prototype treatments having higher TA than the PE treatment. This study demonstrates that BDMs can be comparable to PE mulch in terms of performance and impacts on crop productivity in day-neutral strawberry, suggesting that BDMs could be a viable alternative to PE mulch for strawberry growers in the Pacific Northwest.

Open access

Rachel E. Rudolph, Lisa W. DeVetter, Chris Benedict and Inga A. Zasada

A survey was conducted in Washington State in 2015 and 2016 to gauge grower perceptions, understanding, and current practices regarding soil quality. Soil quality has been defined as the ability of the soil to sustain plants, animals, and humans over time. Many current practices of modern agriculture can be detrimental to soil quality, including soil tillage and soil fumigation, both of which are commonly used for the Washington red raspberry (Rubus idaeus) production system. The area between red raspberry beds, known as the alleyway, is frequently tilled and kept bare, without groundcover, to manage weeds. Growers commonly fumigate the soil before planting red raspberry to manage soilborne pathogens and plant-parasitic nematodes. The majority of red raspberry growers surveyed consider soil quality quite often in relation to the management of their fields. The majority of growers during both years considered cover crops to have a positive impact on soil quality. However, growers also perceived soil fumigation to have a positive impact on soil quality. The majority of growers responded that they were willing to adopt alleyway cover crops for a variety of reasons, including improving red raspberry production, physical soil quality, and beneficial soil microorganism populations. This survey demonstrated that there is interest in soil quality among growers; however, there is a difference in perceptions between growers and researchers regarding how management practices impact soil quality.