Search Results

You are looking at 1 - 10 of 29 items for

  • Author or Editor: Kirk D. Larson x
  • User-accessible content x
Clear All Modify Search
Free access

Kirk D. Larson

Each year, 500,000,000 bare-root plants (crowns) are used to establish strawberry plantings in California. Careful placement of plants in the planting holes is a critical determinant of plant growth and productivity, but large-rooted crowns are difficult to plant correctly. Use of uniform plant material would facilitate proper planting. I conducted a study in 1997–98 to determine the influence of three root pruning treatments on performance of `Camarosa' bare-root strawberry plants. Crowns were machine-dug from a nursery on 27 Oct. 1997. Two-hundred-forty plants were selected for uniformity of size, and root systems of all selected plants were >12.7 cm in length. Root systems of individual plants were randomly subjected to three pruning treatments: nonpruned (NP), pruned to 8.9 cm in length (P1), or pruned to 4.45 cm in length (P2). Twenty plants were randomly selected from each pruning treatment, washed, divided into excised and intact root tissues, and dried at 70 °C for 6 days. Pruning resulted in the removal of 23% and 78% of root dry mass for plants in the P1 and P2 treatments, respectively. For each treatment, the 60 remaining plants were established in raised beds at the Univ. of California South Coast R.E.C. in Irvine on 1 Nov. 1997. Experimental design was a RCB, with one 20-plant plot per treatment in each of three replicate blocks. There was no plant mortality and no difference among treatments in plant canopy diameter in March (mean diam. = 36.7 cm). Fruit yields were determined for each plot at weekly intervals from 1 Feb. to 18 Apr. 1998. There was no effect of pruning on yield or fruit size, suggesting that strawberry root systems have considerable regenerative ability.

Free access

Kirk D. Larson

Southern California strawberry growers use clear polyethylene mulch to increase soil warming and promote plant growth and fruiting, but use of clear poly mulch is only feasible when effective preplant soil fumigation controls weeds. In the absence of methyl bromide fumigation, the use of wave-length selective (WLS) or black polyethylene bed mulches may be required for adequate weed suppression, but the influence of these materials on strawberry plant growth and productivity in southern California is not well-documented. We conducted experiments in 1994–95 and 1995–96 to determine the influence of various mulch formulations on soil temperature and growth and productivity of `Chandler' strawberry in Irvine, Calif. Clear poly and a green WLS material (IRT76, AEP Plastics) were compared in both trials; in addition, the 1995–96 trial included a brown WLS material (ALOR, PolyWest, Inc.) and a black poly mulch. For both trials, freshly dug runner plants were established in premulched beds in early October, and soil temperatures were continuously monitored at a 10-cm depth using thermocouples and a recording datalogger. Fruit harvest commenced in December and continued through June. In both years, clear poly mulch resulted in significantly greater soil temperatures, greater December plant diameters, and greater early and total fruit yields than other mulches. In both years, use of clear poly resulted in 12% greater fruit yields than the other three materials. No growth or productivity differences were observed among the WLS and black mulches, although differences were observed in mean soil temperatures.

Free access

Kirk D. Larson

Replant soil fumigation with mixtures of methyl bromide (MeBr) and chloropicrin (trichloronitromethane) is a standard practice for pest and disease control in fruit crop nurseries in California. The proposed phase-out of MeBr by the year 2001 requires that alternative soil sterilants be studied for nursery use. Therefore, on 5 April, 1993, three preplant soil treatments were applied to new strawberry ground: 1) MeBr/chloropicrin (67:33) at 392 kg/ha: 2) chloropicrin, a possible MeBr substitute. at 140 kg/ha: and 3) nonfumigation. The experimental design was a RCB: there were two plots (each 10′ × 15′) for each of two cultivars (`Chandler' and `Selva') for the 3 soil treatments in each of 3 blocks. Mother plants were planted 26 April, and plots were machine-harvested in October, 1993. All plants from each plot were uniformly graded, after which mean stolon yield per mother plant, mean crown diameters, and crown and root dry wts were determined. Cultivar effects and cultivar × treatment interactions were not observed, so data for the two cultivars were pooled. Stolon production per mother plant was greatest for trt 1 (18.56 stolons), intermediate for trt 2 (15.75 stolons), and least form 3 (7.89 stolons). For trt 3, crown dieters. and crown and root dry wts were reduced relative to those of trts 1 or 2. Stolons from all trts were planted in a fruit production field on 13 October, 1993. After two months, canopy diameters were greatest for plants from trt 1 (27.1 cm), intermediate for plants from trt 2 (26.2 cm) and least for plants from trt 3 (24.9 cm). The results indicate that, compared to standard soil fumigation with MeBr/chloropicrin. small, but significant, reductions in runner production and plant vigor can be expected following nursery soil fumigation with intermediate rates of chloropicrin.

Full access

Kirk D. Larson

Free access

Kirk D. Larson and Douglas V. Shaw

Three preplant soil fumigation treatments were applied on 5 Apr. 1993 to a nursery site that had not been planted previously to strawberries (Fragaria ×ananassa Duch.): 1) a mixture of 67 methyl bromide: 33 chloropicrin (CP) (by weight, 392 kg·ha–1) (MBCP); 2) 140 kg CP/ha; and 3) nonfumigation (NF). On 26 Apr., cold-stored `Chandler' and `Selva' strawberry plants of registered stock were established in each treatment. Soil and root/crown disease symptoms were absent in all treatments during the course of the study. In October, runner plants were machine-harvested and graded to commercial standards. The cultivars produced a similar number of runners per mother plant. Fumigation with MBCP, CP, and NF resulted in 18.56, 15.75, and 7.89 runners per mother plant, respectively. For `Selva', runner root and crown dry weights were similar for the MBCP and CP treatments, but NF resulted in significant reductions compared to the other two treatments. For `Chandler', fumigation with CP resulted in reduced root dry weight, and NF resulted in reduced crown and root dry weights compared to fumigation with MBCP. The results demonstrate the marked decreases in strawberry runner production and runner size that can occur in the absence of preplant soil fumigation, even on new strawberry ground. Also, small, but significant, reductions in runner production and runner size may occur with CP applied at a rate of 140 kg·ha–1 compared to standard fumigation with MBCP. Chemical name used: trichloronitromethane (chloropicrin).

Free access

Kirk D. Larson and Douglas V. Shaw

Strawberry (Fragaria ×ananassa L.) runner plant production during a 4-year period was compared on nursery soils treated with methyl bromide (MB) and chloropicrin (CP) mixtures (MB:CP) and three alternative soil treatments: CP, mixtures of 1,3-dichloropropene (Telone®) and CP (DP:CP), and no fumigation (NF). The effect of soil treatment on runner plant production for a single nursery propagation cycle was determined in all 4 years. In 2 years, runner production in a final propagation cycle was also determined as a function of soil treatment in previous cycles. A single propagation cycle in NF soil decreased runner production relative to all other treatments. Treatments with CP at rates of 140 to 191 kg·ha–1 generally decreased runner production significantly (P ≤ 0.05) in comparison with treatment with MB:CP; use of CP at rates ≥303 kg·ha–1 resulted in statistically equivalent runner production. In one trial, use of two DP:CP formulations (516 kg·ha–1 of a 7:3 DP:CP mixture, and 448 kg·ha–1 of a 3:7 DP:CP mixture) significantly reduced and did not affect runner production, respectively, relative to the use of MB:CP. Use of MB:CP in the previous propagation cycle also increased runner productivity in comparison with NF. Runner productivity of planting stock produced with 314 kg·ha–1 of CP did not differ statistically from that of stock produced with MB:CP, but productivity of planting stock on soil treated with 157 kg·ha–1 of CP was intermediate between that on NF and MB:CP-treated soil. Planting stock grown on nontreated soil in two previous propagation cycles produced 25% fewer runner plants than did similar stock grown on MB:CP-treated soil. Productivity of planting stock produced with CP at rates of 280 to 314 kg·ha–1 in two previous propagation cycles did not differ statistically from that of stock produced with MB:CP. Results of meta-analyses indicated that fumigation with MB:CP was more effective in increasing runner production than was CP or NF, regardless of the propagation cycle or rate of application. For mixtures of 1,3-dichloropropene and CP, nursery productivity was maximized by using at least 280 kg·ha–1 of CP.

Free access

Douglas V. Shaw and Kirk D. Larson

Yield for annual California strawberry (Fragaria ×ananassa Duch.) production systems in soils treated with combinations of methyl bromide–chloropicrin (MB:CP) were compared with four alternative soil treatment systems using meta-analysis. Studies represent 11 production seasons, and were conducted at three distinct locations in California. Fumigation with mixtures of methyl bromide (MB) and chloropicrin (CP) increased yield significantly compared with any and all alternatives lacking MB. In a combined analysis of 45 studies, fumigation with MB:CP compounds increased yield an average of 94.4% (d+ = 2.874 ± 0.098) compared with yields for plants in nonfumigated (NF) soils. Further, the effect of MB:CP fumigation increased over the first three strawberry cultivation cycles: MB:CP–fumigated soils provided a 59.2% (d+ = 2.166 ± 0.146) yield advantage when one cycle of fumigation was omitted, a 100.2% (d+ = 3.000 ± 0.143) advantage when two cycles were omitted, and a 148.4% (d+ = 6.201 ± 0.348) yield advantage when three or more cycles of MB:CP were omitted. In a combined analysis that included 34 studies, soil fumigation with MB:CP conferred a 9.6% (d+ = 0.751 ± 0.087) yield advantage over fumigation with CP alone. Soils treated with MB:CP yielded 6.8% (d+ = 0.437 ± 0.114) more fruit than those treated with very high rates of CP (336–396 kg·ha–1), and 15.4% (d+ = 1.190 ± 0.134) more than soils treated with commercially realistic rates (168–224 kg·ha–1). Similar to the comparison using NF soils, the efficacy of very high rates of CP appeared to diminish over cycles of strawberry cultivation; MB:CP increased yield 2.2% (d+ = 0.043 ± 0.162) in the first CP production cycle, 10.6% (d+ = 0.588 ± 0.174) and 13.7% (d+ = 2.054 ± 0.401) in the following two cycles. Combinations of dichloropropene (DP) and CP were no more effective than were lower rates of CP alone, and MB:CP conferred a 14.4% (d+ = 0.962 ± 0.162) yield advantage over mixtures of DP:CP. Mixtures of MB:CP increased yield 29.8% (d+ = 3.199 ± 0.287) compared with metam sodium (MS). The standardized effect was similar when comparing MB:CP combinations with either MS or NF soils, suggesting little effect of MS on the yield response. Chemical names used: trichloronitromethane (chloropicrin); 1,3-dichloropropene (dichloropropene); sodium N-methyldithiocarbamate (metam sodium).

Free access

Douglas V. Shaw and Kirk D. Larson

Yield and fruit size were determined for 49 strawberry (Fragari ×ananassa Duch.) genotypes during a 7 year period, in soils prepared with and without preplant soil fumigation using 2 methyl bromide: 1 chloropicrin (wt/wt). Strawberries were grown in alternate years, with the nonfumigated treatment representing the first, second, third, and fourth strawberry crop cycles initiated without soil fumigation. Highly significant (P < 0.01) effects of soil fumigation treatment were present for yield in a combined analysis over all years; fumigation increased yield by 41% over nonfumigated soils in the first nonfumigated cultivation cycle and by 68% to 74% for subsequent nonfumigated cycles. Fruit size was less affected by soil treatment but increases due to fumigation (2% to 18%) were significant (P < 0.05) in the third or fourth nonfumigated crop cycle. Genotypic variances were highly significant in the combined analysis, whereas geneti × fumigation interaction variances were significant only for fruit size and contributed <8% of the total phenotypic variance for either trait. Genetic correlations were r g = 0.77 and 0.92, respectively, for yield and fruit size treated as independent traits across soil fumigation environments. There was no evidence for genes that confer specific adaptation to nonfumigated soils, or that these genes emerge as important contributors to the phenotypic variation as the soil environment deteriorates with repeated cultivation of strawberry in nonfumigated soil. Chemical names used: trichloronitromethane (chloropicrin).

Free access

Kirk D. Larson and Douglas V. Shaw

Performance characteristics for 12 strawberry genotypes (Fragaria ×ananassa Duch.) from the Univ. of California, Davis, strawberry improvement program were evaluated in annual hill culture, with and without preplant soil fumigation using a mixture of 67 methyl bromide:33 chloropicrin (trichloronitromethane) (wt/wt, 392 kg·ha-1). Plants were established at two locations; one trial followed several cycles of strawberry plantation, whereas the other had not been cropped with strawberries for 20 years. Plant mortality was <3% and did not differ between soil treatments; thus, the main effects of fumigation treatment in these experiments were due to sublethal effects of soil organisms. Plants grown in nonfumigated soil produced 51% and 57% of the fruit yield of plants grown in fumigated soil for soils with and without a recent history of strawberry cultivation, respectively. Nonfumigated treatments also had reduced fruit weight and uniformly lower vegetative vigor during the early phases of plantation establishment. Significant genotype x fumigation interactions were not detected for any of the growth or performance traits at either location. Further, the proportion of variance attributable to interactions was at most 25% of that due to variation among genotypes, even for this highly selected population. Genotypic correlations for traits evaluated in different fumigation treatments ranged from 0.80 to 1.00; thus, selection in either soil environment is expected to affect largely the same sets of genes. These results demonstrate that strawberry productivity is substantially increased by fumigation, even in the absence of lethal pathogens or a discernible replant problem. More importantly, there appears to be little opportunity for developing cultivars specifically adapted to sublethal effects of nonfumigated soils.

Free access

Douglas V. Shaw and Kirk D. Larson

The genetic opportunity for selection of early fruiting strawberry cultivars was evaluated using seedling populations from the Univ. of California (UC) breeding program in three years. Narrow-sense heritabilities for early season yield and for the proportion of an individual's total yield expressed early were moderate (h2 = 0.24-0.53) and broad-sense heritabilities were slightly larger (H2 = 0.31-0.70), suggesting the presence of some nonadditive genetic variance for these traits. These two traits were genetically correlated with each other (rg = 0.78-0.98), but only early yield was consistently genetically correlated with seasonal yield (rg = 0.52-0.82). Selection was performed for each trait using an index on full-sib family means and individual phenotypic values in two of the three years, and predicted response was compared with that obtained using vegetatively propagated runner plants from selected genotypes in the subsequent fruiting season. Statistically significant (P < 0.05) selection response was obtained in one of two years for each trait, and combined analysis demonstrated highly significant (P < 0.01) response for both traits. However, realized response over all traits and years was just 27.3% of that predicted based on the estimated heritabilities and applied selection intensities. These results suggest that selection for early yield should be based at least in part on runner plant evaluations rather than exclusively on seedling performance.