Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: K. Plumley x
  • User-accessible content x
Clear All Modify Search
Free access

D.S. Gardner, T.K. Danneberger, E. Nelson, W. Meyer and K. Plumley

Genetically transformed cultivars of creeping bentgrass (Agrostis stolonifera L. syn. Agrostis palustris Huds.) that are resistant to glyphosate have been developed by a collaboration of the Scotts and Monsanto companies. Prior to commercial release, we desired to determine if the transformed plants behave similarly to traditional creeping bentgrass except for the effects expected from the inserted gene, i.e., resistance to glyphosate. Therefore, studies were initiated on 23 June 2000 in Marysville, Ohio; 14 July 2000 in Middleton, N.J.; and 20 June 2000 in Gervais, Ore., to examine the relative lateral spread and competitive ability of several transformed lines of creeping bentgrass, non-transformed controls, and reference cultivars. Vegetative plugs of creeping bentgrass were transplanted into a mature stand of Kentucky bluegrass (Poa pratensis L.) or a uniform mixture of Kentucky bluegrass with perennial ryegrass (Lolium perenne L.). The plots were watered as needed to prevent moisture stress. Competitive ability of the transformed plants and reference cultivars were determined monthly by measuring the average diameter of the creeping bentgrass patch. On all observation dates, the transgenic lines, as a group, were smaller in average diameter (5.1-7.6 cm) compared to the reference cultivars (5.4-14.2 cm) and non-transformed control lines (5.9-10.2 cm). At the end of the observation period (Aug. 2001), no differences (P = 0.05) in lateral spread were observed between individual lines of transgenic bentgrass. Three lines of interest, ASR365, ASR368, and ASR333, had lateral spread rates that are similar to, or less than, that of their non-transformed parent and the conventional creeping bentgrass cultivars tested. Chemical names used: N-(phosphonomethyl) glycine (glyphosate).