Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Joshua J. Blakeslee x
  • User-accessible content x
Clear All Modify Search
Restricted access

Dominic P. Petrella, James D. Metzger, Joshua J. Blakeslee, Edward J. Nangle and David S. Gardner

Anthocyanins are plant pigments that are in demand for medicinal and industrial uses. However, anthocyanin production is limited due to the harvest potential of the species currently used as anthocyanin sources. Rough bluegrass (Poa trivialis L.) is a perennial turfgrass known for accumulating anthocyanins, and may have the potential to serve as a source of anthocyanins through artificial light treatments. The objectives of this research were to determine optimal light conditions that favor anthocyanin synthesis in rough bluegrass, and to determine the suitability of rough bluegrass as a source of anthocyanins. When exposed to high-intensity white light, rough bluegrass increased anthocyanin content by 100-fold on average, and anthocyanin contents greater than 0.2% of dry tissue weight were observed in some samples. Blue light, at intensities between 150 and 250 μmol·m−2·s−1, was the only wavelength that increased anthocyanin content. However, when red light was applied with blue light at 30% or 50% of the total light intensity, anthocyanin content was increased compared with blue light alone. Further experiments demonstrated that these results may be potentially due to a combination of photosynthetic and photoreceptor-mediated regulation. Rough bluegrass is an attractive anthocyanin production system, since leaf tissue can be harvested while preserving meristematic tissues that allow new leaves to rapidly grow; thereby allowing multiple harvests in a single growing season and greater anthocyanin yields.

Free access

Srinivas N. Makam, Wendy Ann Peer, Joshua J. Blakeslee and Angus S. Murphy

Since the mid-1980s, a syndrome known as mature watermelon vine decline (MWVD) has had a serious effect on watermelon (Citrullus lanatus Thunb.) crops in Southern Indiana. As efforts to identify a pathogen responsible for MWVD have been unsuccessful, we have examined cultural conditions that might contribute to the syndrome. Field conditions were simulated in greenhouse pot trials to assess the impact of one or more factors on watermelon growth. Alone, low organic matter, soil acidity, black plastic mulch, and liming did not significantly affect root fresh weight; however, when these conditions were combined, root fresh weight was significantly reduced. Alanap-treated watermelons in combination with simulated cultural conditions resulted in further reduction of root fresh weight and had symptoms similar to MWVD. Watermelon plants grown in Alanap-treated, aged soil (from the previous year's experiments) under combined deficient cultural conditions demonstrated increased symptoms of MWVD and susceptibility to the pathogens Rhizoctonia and Pythium spp. Alanap, N-1-naphthylphthalamic acid (NPA), is a preemergent herbicide that functions as an inhibitor of auxin efflux and is widely used by watermelon farmers to impede obnoxious weeds. Metabolism of Alanap in planta involves aryl amidases (aminopeptidases) that also function in defense responses. We hypothesize that negative cultural practices are likely to inhibit defense responses and watermelon resistance to residual Alanap, leading to MWVD. We suggest that MWVD incidence is increased by certain common cultural conditions and that the incidence of MWVD can be reduced by altering these cultural practices.