Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Isao Ogiwara x
  • User-accessible content x
Clear All Modify Search
Restricted access

Yuya Mochizuki, Saori Sekiguchi, Naomi Horiuchi, Thanda Aung and Isao Ogiwara

To clarify the response of net photosynthetic rate (Pn), stomatal conductance (g S), transpiration rate (Tr), and leaf intercellular CO2 concentration (Ci) to irradiance on the adaxial and abaxial sides of mature and young strawberry leaves using blue, green, and red light-emitting diodes (LEDs), irradiation from a short distance was investigated using ‘Tochiotome’. Light–photosynthetic response curves of the adaxial side of mature leaves were not different among LED treatments. However, those of the adaxial side of young leaves irradiated with red LEDs were less than those of other LED treatments. Pn of the abaxial side of mature leaves was 42% to 71% of the abaxial side. In young leaves, Pn of the abaxial side was 17% to 68% of the adaxial side. Moreover, light–transpiration response curves were different with LED treatments. Ci and Tr under blue and green LEDs were greater than those under red LEDs. This indicates that blue and green lights affected the stomatal opening. In contrast, red LEDs decreased Ci more than other LED treatments. In addition, reactions of the adaxial side of young leaves under blue and red LEDs were seen not only in ‘Tochiotome’, but also in ‘Sachinoka’ and ‘Eran’, which indicates that the photosynthetic reactions of blue light and red light are common characteristics of the strawberry. Therefore, red LEDs promoted the photochemical reaction and activated the CO2 fixation system. Based on the results of this study of short-distance lighting with LEDs in strawberry production, irradiance of the abaxial side of leaves by blue or green LEDs might improve more assimilates in young leaves compared with red LEDs to increase strawberry yield.