Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Gabriela Verdugo x
  • User-accessible content x
Clear All Modify Search
Full access

Cristian Moya, Eduardo Oyanedel, Gabriela Verdugo, M. Fernanda Flores, Miguel Urrestarazu and Juan E. Álvaro

Greenhouse tomato production is shifting to meet emerging consumer needs. Increasing environmental concerns have pressured growers to supply high-quality vegetables using sustainable production methods. The utilization of adapting fertigation to production conditions and/or nutrient solutions of moderately high conductivity seems promising in providing high yields of superior quality while limiting the emission of nutrients to the environment in greenhouse tomato crops. A tomato crop was grown in soilless culture with various levels of electrical conductivity (EC), 2.2, 3.5, and 4.5 dS·m−1, adjusting the final nutrient concentration and maintaining nutritional balance. The effect of nutrient solutions with moderately high EC on fertigation parameters and the emission of nutrients to the environment, total crop productivity, distribution of fruit sizes, and dietary and organoleptic qualities were measured. Nutrient solutions of moderately high EC decreased total and commercial yield, with an average reduction from 5% to 19% and 3% to 22%, respectively. A considerable decrease in extra large and large fruits, with an average reduction from 69% to 42%, was also observed. Nonetheless, dietary-related metabolites were significantly increased at the highest EC values: lycopene (6.3%), ascorbic acid (8.8%), total phenolics content (8.3%), and total antioxidant activity (11.1%). EC values of 3.5 and 4.5 dS·m−1 are not widely used in commercial production but are frequently measured in drainage solutions in open hydroponic systems and discarded solutions in closed systems, mainly because of the use of poor-quality water and the accumulation of excess nutrients.

Free access

Gabriela Verdugo Ramírez, Mauricio Cisternas Baez, Ursula Steinfort, Hermine Vogel and Rosa Cueto-Ewoldt