Search Results

You are looking at 1 - 10 of 40 items for

  • Author or Editor: Ellen T. Paparozzi x
  • User-accessible content x
Clear All Modify Search
Full access

Ellen T. Paparozzi

As a floriculturist, when I first decided to grow strawberries (Fragaria ×ananassa) in the greenhouse, I thought it would be a snap. After all, I could practice what I preach to my classes in that I would use all the sustainable growing tricks from floriculture, create a production time line and it would be ready, set grow. However, moving a field-grown summer crop into a greenhouse as a winter crop was not the same as moving a winter greenhouse-grown crop outside for the summer. Not only were the plants typically grown in lush field soil, but also the fertilizer recommendations were not directly translatable (i.e., parts per million nitrogen). The pesticides used were not licensed for greenhouses and of course, there were no clues as to schedules of what to do when. Finally, there were the mystery problems that occurred. With high gas prices and the interest in local food production, it seems probable that over the next 5 to 10 years, more and more fruit, vegetables and even nut plants will be moved into greenhouse and high tunnel production. The purpose of this article is to identify the kinds of information needed to make a “smooth” transition from field to greenhouse for alternative crops, like strawberries, grown during nontraditional seasons.

Free access

Ellen T. Paparozzi

Free access

Ellen T. Paparozzi

Fertilizer particularly nitrogen is part of the concern about groundwater contamination. Many floricultural and ornamental plants do not need the high rates of nitrogen that are typically recommended. However, whenever one alters the quantity of a given nutrient the overall nutrient balance, as well as other physiological processes, changes. A brief overview of our research on poinsettias, roses, and chrysanthemums will be presented. Suggested ratios, critical S levels and nutrient problems associated with incorrect balances will be shared. Limitations due to statistical methods and the impact nutrient balance has on certain plant processes such as flowering and coloring and thus, consumer acceptance will be summarized. Future plans in this area may focus on the need for new statistical techniques, nutrient acquisition by roots and consumer perceptions of plant quality.

Full access

Ellen T. Paparozzi

Free access

Stacy A. Adams and Ellen T. Paparozzi

Nitrogen and sulfur are macronutrients required by plants to form amino acids used in protein synthesis and other metabolic processes. Commercial poinsettia nutrient recommendations suggest N levels of 350-400 ppm later reduced to 200-250 ppm N. Previous hydroponic research determined that N may be reduced by half if supplied S levels are adequate. The purpose of this study was to look at multiple N and S levels and gauge the effects these combinations had on plant quality.

Poinsettia cv. `Dark Red Hegg' plants, grown in a soilless mix, were fertilized with 56 N and S combinations. N was supplied from 100-275 ppm and S from 0-75 ppm. Plants were evaluated quantitatively by chroma meter readings every three weeks and qualitatively by marketability evaluations from commercial producers, retailers, and consumers.

Results indicate 0 ppm S plant color was more yellow-green than all others. Plants were greener as N increased from 100-150 ppm with no difference above 175 ppm. Evaluators identified plants receiving 0 ppm S and 100 or 125 ppm N as unmarketable. N may be reduced to 175 ppm with no effect on plant quality if adequate S is applied.

Free access

Li-Chun Huang and Ellen T. Paparozzi

previous studies indicate that there is a significant relationship between the levels of nitrogen and sulfur applied and the growth of floricultural crops. Poinsettia and roses grew well in experiments involving hydroponic solutions that contained reduced nitrogen and some sulfur.

Cuttings of Dendranthema grandiflora cv Dark Yellow Fuji Mefo, were grown in hydroponics with either 64, 127, or 254 ppm N in combination with either 0, 1, 2, 4, 8, 16, 32, 64 ppm S. Plants were grown unpinched and short day treatment started at the end of week 3. Data recorded included symptoms of S deficiency, date of flower initiation, stem length, flower diameter and visual observation of root growth. Color difference of leaves was measured with a chromameter. New leaves and flower heads were taken for sulfur analysis; mature leaves were used for N analysis.

Plants receiving no S showed depressed initiation and development of branch roots, delayed flower initiation, reddened lower leaves and reduced plant growth. Plants receiving some S in combination with any level of N showed good color and acceptable flower diameter and stem length.

Full access

Ellen T. Paparozzi and Kimberly A. Williams

Chat rooms and their use in everyday life are becoming increasingly common, and the technology may be a useful tool to link students with experts of a given subject material and each other. In our shared course Plant Nutrition and Nutrient Management, we experimented with using a chat room to link students with experts in the field of plant nutrition. Our main goal was to enhance the learning experience of the students by providing them with access to national and international plant nutrition researchers. Web CT was used to create and conduct the chat rooms and a chat etiquette evolved to prevent crosstalk and control the flow of the discussions. Positive outcomes of the chat room use included exposure of students to the technology and beneficial interaction between students and experts. Negative aspects of chat room use included the time involved to coordinate the overall effort and train experts to use the technology; the slow pace of some chats; effective grading; and the superficial coverage of some topics. We are developing modifications for future sessions to allow subjects to be explored in more depth and to improve networking between students and experts.

Full access

Ellen T. Paparozzi and Robert R. Tripepi