Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: David W. Wolff x
  • User-accessible content x
Clear All Modify Search
Free access

David W. Wolff

We conducted a field screen of 130 melon cultigens to identify potential sources of host-plant resistance to Monosporascus cannonballus. Seed were sown in Speedling trays with inoculated or non-inoculated media. Plants were transplanted into a field known to be highly infested with Monosporascus cannonballus. Noninoculated plots were planted in rows that were fumigated with Telone II. Cultigens were arranged in a randomized complete block with three replications in each treatment (fumigated, nonfumigated). A disease symptom rating (1 = complete death to 5 = no symptoms) was taken at 78 and 90 days post-transplanting. Disease symptoms were most severe and occurred earliest in the inoculated, nonfumigated plots. Natural infection by Monosporascus occurred in the fumigated plots as over 95% of root samples collected contained perithecia. At the second rating date, 108 of the 130 cultigens tested were classified as moderately to highly susceptible (rating < 2.5). The four most resistant genotypes had a second rating equal or close to 4.0 (`Galia', `Deltex', `Rocky Sweet', and `Charlynne'). A group of 14 genotypes showed moderate resistance with a second rating of 3.0. Included in this group were `Morning Ice', `Doublon', `Israeli', `MR-1', `Santa Clause', and `Primo'. The physiological stress of a concentrated fruit set increases severity of vine decline symptoms.

Free access

David W. Wolff and James R. Dunlap

Cucumis melo varieties show a great diversity of ripening and abscission phenotype, ethylene production, and postharvest keeping quality. As a preliminary step in the development of melons with improved shelf-life and modified ripening, we surveyed 100 genotypes of melons with diverse ripening characteristics for ethylene production rate and shelf-life. Genotypes representing seven melon types (Western shipper cantaloupes, Eastern cantaloupes, Long shelf life cantaloupes [LSL], Charenteis, Galias, Honeydews, Casabas) were planted in the field in a randomized complete block with three replications. C. melo var. reticulatus and C. melo var. inodorus were harvested 40 and 50 days post-anthesis, respectively, and brought in the lab for ethylene production measurement. Fruit at horticultural maturity were also harvested and stored at room temperature. After 7 days, a postharvest decay rating (1 = complete rot and collapse–5 = no softening or decay) was taken to determine relative shelf-life of the genotypes. Average ethylene production rate ranged from 44.44 to 0.64 nl·h–1·g–1 for Eastern cantaloupes and Casaba melons, respectively. A negative linear relationship was observed between ethylene production rate and postharvest decay rating. LSL cantaloupes had the lowest ethylene production rate of the netted, orange flesh types. The relationship between ethylene production rate and polymorphism for ACC oxidase (pMEL1) and ACC synthase (pMEACS1) cDNA probes is being investigated.

Free access

David W. Wolff and Marvin E. Miller

Monosporascus root rot/vine decline (MRR/VD), caused by Monosporascus cannonballus, is a serious disease of the major melon production areas of Texas, California, and Arizona. We have previously identified differing levels of tolerance in melon germplasm based on vine disease symptoms. This study was conducted to evaluate the yield response of commercial and experimental cantaloupe and honeydew hybrids subjected to MRR/VD. Thirty-nine and six cantaloupe and honeydew hybrids, respectively, were transplanted into a field highly infested with M. cannonballus in March 1995 in a randomized, complete block with 4 replications. The field was highly infested with Monosporascus cannonballus. `Caravelle' (very susceptible) and `Deltex' (tolerant) were included as control entries. Fruit were harvested at maturity and sized. Any fruit that did not mature completely due to vine death were counted as culls (unmarketable). Marketable yield of the cantaloupe entries ranged from 26.74% to 67.35%. The most tolerant hybrids were `SR103654', `Don Carlos', `Explorer', and `Ovation'. Marketable yield of the honeydews ranged from 8.43% to 41.46%, with `Morning Ice' and `Creme de Menthe' showing the most tolerance. The best performing hybrids were evaluated again the Fall 1995 and Spring 1996 seasons. In general, genotypes which matured later, and had a more dispersed fruit set, were more tolerant to MRR/VD. This supports previous data showing that high physiological stress (heavy, concentrated fruit load) leads to more severe and rapid vine collapse.

Free access

X.Y. Zheng and David W. Wolff

Three randomly amplified polymorphic DNA (RAPD) markers (E07, G17, and 596) linked to the Fom-2 gene, which confers resistance to race 0 and 1 of Fusarium oxysporum f. sp. melonis, were evaluated by RAPD-polymerase chain reaction for their linkage to Fusarium wilt resistance/susceptibility in diverse melon cultigens (48 resistant, 41 susceptible). Primer 596 was identified in the multiple disease-resistant breeding line MR-1, whereas E07 and G17 were identified in the susceptible `Vedrantais'. The RAPD markers E07 (1.25 kb) and G17 (1.05 kb) correctly matched phenotypes in 88% and 81% of the cultigens. The validity of the RAPD scores was verified by Southern hybridization analysis for sequence homology and bulked segregant analysis of a selected cross population for the linkage. These results will facilitate the introgression of resistance genes into susceptible lines from multiple sources in marker-assisted selection.

Free access

David W. Wolff, Wanda W. Collins and Thomas J. Monaco

Several inheritance experiments with bentazon herbicide-tolerant Capsicum annuum `Bohemian Chili' (BCH P1) and susceptible `Keystone Resistant Giant' (KRG, P2) and `Sweet Banana' (SB, P2) were conducted. Populations of plants at the three- to five-leaf stage were treated with a bentazon rate of 4.5 kg·ha-1. Tolerance expression was affected by environment and varied across experiments. F2 and BCP2 generations from both susceptible parent crosses fit the expected ratios for a single, dominant gene conferring tolerance. Reciprocal F1s showed a maternal effect on tolerance intensity not consistently observed in reciprocal BCP2s or at all in reciprocal F2s. Segregation ratios of reciprocal crosses, however, were not heterogeneous, based on x2 tests of observed ratios in seven of eight cases. Variable tolerance expression in expected homogeneous populations (P1, P2, and F1) and lower tolerance in BC3 families suggested that modifying factors affected tolerance. Analysis of genetic components of shoot height and fresh weight generation means showed significant digenic epistasis, primarily additive × dominance. Modifying genes that affect the major gene controlling tolerance in BCH are, therefore, present. The simple inheritance of bentazon tolerance, even though modifying factors were present, facilitated transfer of bentazon tolerance into KRG via backcrossing. Chemical name used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon).

Free access

David W. Wolff, Marvin E. Miller and Carmen Lander

The nature and magnitude of genotype × environment interactions will determine the extent of testing required (locations, years) to accurately evaluate a genotype's performance. Data from yearly T-AES muskmelon variety trials were analyzed to determine the level of variety (V) × year (Y), V × location (L), and V × Y × L interactions for yield and fruit size. Data analyzed were of nine hybrids grown at three commercial farms over two years. Fruits were harvested similar to grower practices, and were sorted into size classes (9 - 30) or culls. V × Y and V × L interactions for marketable yield and total yield were not significant. V × Y × L interaction was significant for marketable yield, but not for total yield. V × Y × L interactions were highly significant for percentage culls and percentage of fruit in each size class. V × L interactions were also significant for percentage of fruit in most size classes. Data indicate that specific location-year combinations differentially affect a genotype's fruit size, most likely due to weather, planting time, and stress factors. Multiple year and location testing of genotypes is therefore critical, particularly for evaluation of fruit size.

Free access

David W. Wolff, Daniel I. Leskovar, Mark C. Black and Marvin E. Miller

The effect of zero, one, and two fruits per vine on plant growth and reaction to Monosporascus root rot/vine decline were investigated. In the first study, four cultivars with differing levels of tolerance were evaluated (`Primo', `Deltex', `Caravelle', `Magnum 45'). Vine decline ratings were taken weekly during the harvest period for 4 weeks. Treatments with no fruit showed delayed and less-severe vine decline symptoms. Temperature also effected vine decline symptom expression. In a Fall test, with lower temperatures during fruit maturity, symptoms were delayed in all treatments and often absent in treatments with no fruit load. Vine decline symptom expression is greatly effected by physiological (fruit load) and temperature stress. A subsequent study was conducted to more precisely quantify the effect of various fruit loads on shoot/root partitioning and vine decline symptoms. In addition to growth parameters root disease ratings were taken. `Caravelle', the most-susceptible genotype, was grown under differing fruit loads as mentioned above in Weslaco and Uvalde, Texas. As fruit load increased, root size decreased. Increased vine decline symptoms were observed under higher fruit loads. The implications on germplasm screening and breeding for resistance will be discussed.