Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Alexander R. Kowalewski x
  • User-accessible content x
Clear All Modify Search
Full access

Alexander R. Kowalewski, John N. Rogers III, James R. Crum and Jeffrey C. Dunne

Drain tile installation into a native-soil athletic field and subsequent sand topdressing applications are cost-effective alternatives to complete field renovation. However, if cumulative topdressing rates exceed root system development, surface stability may be compromised. The objective of this research was to evaluate the effects of cumulative topdressing, over a compacted sandy loam soil, on the fall wear tolerance and surface shear strength of a kentucky bluegrass (Poa pratensis)–perennial ryegrass (Lolium perenne) stand. Research was initiated in East Lansing, MI, on 10 Apr. 2007. A well-graded, high-sand-content root zone (90.0% sand, 7.0% silt, and 3.0% clay) was topdressed at a 0.25-inch depth [2.0 lb/ft2 (dry weight)] per application, providing cumulative topdressing depths of 0.0, 0.5, 1.0, 1.5, or 2.0 inches applied from 11 July to 15 Aug. 2007. Fall traffic was applied twice weekly to all treatments from 10 Oct. to 3 Nov. 2007. In 2008, topdressing applications and traffic, as described earlier, were repeated on the same experimental plots. Results obtained from this research suggest that the 0.5-inch topdressing depth applied over a 5-week period in the summer will provide improved shoot density and surface shear strength in the subsequent fall. Results also suggest that topdressing rates as thick as 4.0 inches accumulated over a 2-year period will provide increased shoot density, but diminished surface shear strength.

Full access

Alexander R. Kowalewski, Brian M. Schwartz, Austin L. Grimshaw, Dana G. Sullivan and Jason B. Peake

Hybrid bermudagrasses (Cynodon dactylon × C. transvaalensis) typically have excellent wear tolerance when compared with other turfgrass species. This trait should be evaluated during variety development to reduce the risk of failure when new grasses are planted in areas with traffic stress. The objective of this research was to evaluate the wear tolerance of four hybrid bermudagrasses with differing morphological characteristics. Traffic was applied to the hybrid bermudagrass varieties ‘Tifway’, ‘TifSport’, and ‘TifTuf’, as well as an experimental hybrids (04-76) using a traffic simulator for 6 weeks. Leaf morphology (leaf width, length, and angle) and quantitative measure of density and color [normalized difference vegetation index ratio (NDVI), dark green color index (DGCI), and percent green turf color] were characterized before traffic, and then percent green turf color after 6 weeks of traffic was measured to estimate wear tolerance. ‘TifTuf’ hybrid bermudagrass provided the greatest wear tolerance, as well as the narrowest and shortest leaf lengths, greatest NDVI values and percent green color, and lowest DGCI before traffic. Conversely, 04-76 produced the poorest wear tolerance, as well as the widest and longest leaves, lowest NDVI values and percent green color, and highest DGCI values before traffic. Regression analysis determined that DGCI, leaf length, and leaf width were inversely, or negatively, correlated to wear tolerance, whereas percent green turf color before traffic was directly correlated to wear tolerance. For these hybrids, DGCI had the strongest correlation to increased wear tolerance.

Full access

Alexander R. Kowalewski, Douglas D. Buhler, N. Suzanne Lang, Muraleedharan G. Nair and John N. Rogers III

Previous research has shown that maple (Acer spp.) leaf litter resulted in fewer common dandelions (Taraxacum officinale) when mulched into established turfgrass. However, the leaves used in that research may have contained herbicide residues and were separated by genus, not species. Our research compared the effects of pesticide-free mulched maple and oak (Quercus spp.) leaves on dandelion populations in an established kentucky bluegrass (Poa pratensis) stand maintained as a residential lawn on sandy loam soil. The objectives of this study were to quantify the effectiveness of maple or oak leaf mulches as an organic common dandelion control method and to identify which maple species and rates (particle size and rate per unit area) provided the most effective control. The experimental design was a randomized complete block with treatments arranged as a 5 × 2 × 2 + 1 factorial, with tree leaf species, leaf particle size, leaf application rate, and control as main factors. Leaf species were red maple (Acer rubrum), silver maple (A. saccharinum), sugar maple (A. saccharum), high sugar content sugar maple, and red oak (Quercus rubra). Particle sizes were coarse (0.4–1.0 inch2) and fine (≤0.2 inch2), and application rates were low (0.5 kg·m−2) and high (1.5 kg·m−2). Mulch applications were made in Fall 2003 and 2004 and data were collected beginning in Spring 2004 on kentucky bluegrass spring green-up, and common dandelion plant counts. The high application rate, regardless of tree genus or species, resulted in the highest green-up ratings. Common dandelion plant counts after one (2003) and two (2003 and 2004) mulch applications at the high rate showed that up to 80% and 53% reduction was achieved, respectively. Results indicate that mulching leaves regardless of genus (oak or maple) or maple species into established turfgrass as a leaf litter disposal method will increase spring green-up and contribute to a reduction in common dandelion population.

Full access

Dana Sullivan, Jing Zhang, Alexander R. Kowalewski, Jason B. Peake, William F. Anderson, F. Clint Waltz Jr. and Brian M. Schwartz

Quantitative spectral reflectance data have the potential to improve the evaluation of turfgrasses in variety trials when management practices are factors in the testing of turf aesthetics and functionality. However, the practical application of this methodology has not been well developed. The objectives of this research were 1) to establish a relationship between spectral reflectance and turfgrass quality (TQ) and percent green cover (PGC) using selected reference plots; 2) to compare aesthetic performance (TQ, PGC, and vegetation indices) and functional performance (surface firmness); and 3) to evaluate lignin content as an alternate means to predict surface firmness in turfgrass variety trials of hybrid bermudagrass [Cynodon dactylon × C. transvaalensis]. A field study was conducted on mature stands of three varieties (‘TifTuf’, ‘TifSport’, and ‘Tifway’) and two experimental lines (04-47 and 04-76) at two mowing heights (0.5 and 1.5 inch) and trinexapac-ethyl application (0.15 kg·ha−1 and nontreated control) treatments. Aesthetic performance was estimated by vegetation indices, spectral reflectance, visual TQ, and PGC. The functional performance of each variety/line was measured through surface firmness and fiber analysis. Regression analyses were similar when using only reference plots or all the plots to determine the relationship between individual aesthetic characteristics. Experimental line 04-47 had lower density in Apr. 2010, whereas varieties ‘TifTuf’, ‘TifSport’, and ‘Tifway’ were in the top statistical group for aesthetic performance when differences were found. ‘TifSport’ and ‘Tifway’ produced the firmest surfaces, followed by ‘TifTuf’, and finally 04-76 and 04-47, which provided the least firm surface. Results of leaf fiber analysis were not correlated with turf surface firmness. This study indicates that incorporating quantitative measures of spectral reflectance could reduce time and improve precision of data collection as long as reference plots with adequate range of green cover are present in the trials.