Search Results

You are looking at 61 - 67 of 67 items for

  • Author or Editor: Zhanao Deng x
  • Refine by Access: User-accessible Content x
Clear All Modify Search
Free access

Zhanao Deng, Sandra B. Wilson, Xiaobao Ying, and David M. Czarnecki II

Lantana (Lantana L., Verbenaceae) is widely produced and used in the United States, especially in the south. A 2003 survey of the Florida nursery industry, which consisted of more than 5000 nurseries, indicated that 19.0% of the responding nurseries produced lantana, and the annual sales value of lantana in Florida was estimated to be more than $40 million (Wirth et al., 2004). Lantana plants produce showy flowers all year round in frost-free areas and dieback to the ground in the winter in zones 8b or lower. They attract butterflies, tolerate harsh environmental conditions, have low maintenance

Full access

Carlee Steppe, Sandra B. Wilson, Zhanao Deng, Keri Druffel, and Gary W. Knox

Trailing lantana (Lantana montevidensis) is a popular low-growing ornamental plant valued for its heat and drought tolerance and continuous purple or white flowering throughout much of the year. Recently, trailing lantana was predicted to be invasive by the University of Florida/Institute of Food and Agricultural Sciences (UF-IFAS) Assessment of Non-Native Plants in Florida, and therefore not recommended for use. All cultivars fall under this designation unless proven otherwise. Eight trailing lantana varieties were obtained from wholesale growers and naturalized populations found in Texas and Australia. Plants were propagated vegetatively, finished in 4-inch pots, and planted under field conditions to determine morphological and cytological differences among varieties. Australian trailing lantana differed morphologically from the other varieties in its smaller habit, leaves (which had serrate-crenate leaf margins, and fewer appressed hairs), heavy fruiting, and cold sensitivity (observational reduced growth and flowering during winter months). Nuclear DNA content analysis suggests that Australian trailing lantana is likely a tetraploid and all other varieties evaluated were likely triploids with high levels of sterility. Pollen stainability of Australian trailing lantana was moderately high (58.83%), whereas pollen production was rarely observed in all other varieties. Results support that there are two forms of trailing lantana, the U.S. varieties distinguished by their leaf and flower morphology, ploidy level, and the absence of fruit and viable pollen.

Full access

Richard O. Kelly, Zhanao Deng, Brent K. Harbaugh, and Rick K. Schoellhorn

Florida is one of the top wholesale producers of bedding plants, and in 2003 was ranked fourth in annual bedding plant production and fifth in potted pansy/viola production. Evaluation of pansy cultivars is vital for continued growth of the industry. We evaluated 210 cultivars of pansy (Viola ×wittrockiana) (164 new cultivars) in replicated class tests at the University of Florida's Gulf Coast Research and Education Center at Bradenton, Fla., from 2000–04 to determine the best-of-class and use them in future trials to compare against new entries in the same class. In this report, we provide objective plant measurements of vegetative and floral characteristics as well as subjective performance ratings. Subjective ratings were on a 1 to 7 scale with the highest rating of 7 for excellent. In general, overall performance ratings (combined foliage, flower, arthropod, and disease ratings) ≥5.5 were considered outstanding. Pansy cultivars were grouped into classes based on flower color and pattern. Best-of-class selections that had an outstanding overall performance rating in one or more contested trials, never falling below 5.0 in other contested trials, were: (black class) `Accord/Banner Black Beauty', (blue shades/tints class) `Nature Blue', (blue with blotch class) `Nature Ocean', (mix class) `Panola Clear Mixture', (pink shades/tints with blotch class) `Nature Pink Shades', [purple (dark), blue-violet with white cap class] `Nature Beacon', [purple (dark), blue-violet/white face with blotch class] `Panola Purple With Face', (purple with light eye class) `Baby Bingo Lavender Blue', (white class) `Nature White', (yellow class) `Nature Yellow', (yellow with blotch and purple, blue-violet cap class) `Iona Purple & Yellow With Blotch', (yellow with blotch and red cap class) `Bingo Red & Yellow', (yellow with blotch and red cap class) `Panola Yellow With Blotch', (yellow with dark veins class) `Whiskers Yellow'. We believe these cultivars would perform well in the southern U.S. or areas of the world with similar heat and cold hardiness zones.

Full access

Zhanao Deng, Brent K. Harbaugh, Rick O. Kelly, Teresa Seijo, and Robert J. McGovern

Caladiums (Caladium ×hortulanum) are widely grown as pot or landscape plants for their attractive leaves. Pythium root rot (Pythium myriotylum) is one of the most damaging diseases in caladium, severely reducing plant growth, aesthetic value, and tuber yield. Twenty-three commercial cultivars were inoculated with three aggressive isolates of P. myriotylum and evaluated for their resistance to root rot. Three cultivars, `Apple Blossom', `Blizzard', and `Etta Moore', were found to have a moderate level of resistance (partial resistance) to pythium root rot. The rest of these cultivars were susceptible or highly susceptible to Pythium infection, losing up to 94% of their root tissue to rotting within 10 days after inoculation. Data indicated a linear relationship between root rot severity and leaf loss severity on Pythium-inoculated plants and highlight the importance of controlling pythium root rot in caladium pot plant and tuber production. Comparison of some recent releases with their parents for pythium root rot resistance suggests the potential of developing new resistant caladium cultivars using the identified sources of resistance.

Free access

David M. Czarnecki II, Madhugiri Nageswara Rao, Jeffrey G. Norcini, Frederick G. Gmitter Jr, and Zhanao Deng

Seeds of Coreopsis leavenworthii Torr. & Gray (Asteraceae) are being commercially produced but the lack of genetic diversity information has hindered growers and end users from addressing several critical issues affecting wild collection, commercial production, distribution, and the use of seeds. In this study, the genetic diversity and differentiation among natural, production, and introduced populations were analyzed at the molecular level using 320 amplified fragment length polymorphism (AFLP) markers. A high level of diversity [68.6% average polymorphism; total genetic diversity (H t) = 0.309] and a moderate level of genetic differentiation [total genetic diversity residing among populations (G st) = 0.226; Φst = 0.244; Bayesian analog of Nei's G st (G st-B) = 0.197] was detected among six natural populations—two each from northern, central, and southern Florida. Two distance-based clustering analyses, based on an individual's AFLP phenotypes or a population's allele frequencies, grouped natural populations into three clusters, concordant with our previous results from a common garden study of phenotypic variation. Clustering of populations was mostly according to their respective geographical origin within Florida. The correlation between geographical distances and pairwise F st values between populations was very significant (r = 0.855, P < 0.0001). Two central Florida natural populations were divergent and grouped into separate clusters, indicating that the existence of factors other than physical distance alone were contributing to genetic isolation. Three production populations maintained a level of genetic diversity comparable to that in the natural populations and were grouped with the natural populations from which the production populations were derived, suggesting that the genetic identity of the seed origin was maintained under production practices. The genetic diversity of the introduced population was comparable to that of the source populations (central Florida natural populations), but genetic shift seems to have occurred, causing the introduced population to cluster with local (northern Florida) populations where planted. The observed genetic differentiation among natural populations may indicate a need to develop appropriate zones within Florida for preservation of genetic diversity during seed collection, increase, and distribution. This high level of population differentiation also suggests a need to collect and analyze more natural populations across Florida and from Alabama for a better understanding of the species' genetic diversity and population structure across its distribution range.

Open access

Zhanao Deng, Sandra B. Wilson, Xiaobao Ying, Chunxian Chen, Rosanna Freyre, Victor Zayas, and David M. Czarnecki II

Lantana (Lantana L., Verbenaceae) is produced and grown as an ornamental plant in the United States and many other countries in the world. The ornamental value of lantana comes from its bright-colored flowers. Other attributes of this plant include attraction to multiple species of butterflies; tolerance of drought, heat, and salt; low maintenance requirements; and ease of propagation (Bachman, 2018; Schoellhorn, 2004). With these attributes, lantana is commonly used in the landscape and gardens, including butterfly gardens and water-saving xeriscaping gardens. Propagation and production of lantana plants have been a significant component of the

Free access

David M. Czarnecki II, Zhanao Deng, Madguhuri N. Rao, Frederick G. Gmitter Jr., Young A. Choi, Jeffrey G. Norcini, and David G. Clark

As one of the Florida's state wildflowers, Coreopsis leavenworthii is highly desirable for roadside plantings in all parts of the state. Seeds of this species are being produced by growers. Where should seed be produced for different ecotypes? Where can the seed be used? These are among questions that have arisen in commercial seed production and distribution. To address these questions, it was necessary to assess the levels of genetic diversity. Eleven populations (242 total individuals) were collected from different parts of Florida, grown at one location in central Florida, and observed for morphological variations. North Florida natural populations had more complex leaves, while south Florida natural populations had smaller flowers. Principal component analyses revealed that two of the seven characteristics studied accounted for as much as 88% of the morphological variations observed. Molecular diversity was analyzed by using the fluorescent amplified fragment length polymorphism (AFLP) technique and the capillary sequencing system. Four primer combinations detected 320 AFLP fragments, of which 90.6% were polymorphic. The overall genetic diversity in the species was 0.2206 (estimated using AMOVA), of which 77.9% was within populations and 22.1% was among populations. The genetic distance among populations seemed to be loosely correlated with geographical distances. A high level of gene flow was found in several populations. Based on the results, a model has been developed to describe the genetic relationship of Coreopsis leavenworthii populations.