Search Results

You are looking at 41 - 50 of 66 items for

  • Author or Editor: Terril A. Nell x
  • Refine by Access: User-accessible Content x
Clear All Modify Search
Free access

Andrew J. Macnish, Ria T. Leonard, and Terril A. Nell

Exposure to 0.1, 1.0, or 10 μL·L−1 ethylene for 4 days at 21 °C reduced the display life of 17 commonly traded potted foliage plant genotypes (Aglaonema ‘Mary Ann’, Anthurium scherzerianum ‘Red Hot’ and ‘White Gemini’, Aphelandra squarrosa ‘Dania’, Chlorophytum comosum ‘Hawaiian’, Codiaeum variegatum pictum ‘Petra’, Dieffenbachia maculata ‘Carina’, Dracaena marginata ‘Bicolor’ and ‘Magenta’, Euphorbia milii ‘Gaia’, Euphorbia splendens ‘Short and Sweet’, Ficus benjamina, Polyscias fruticosa ‘Castor’, Radermachera sinica ‘China Doll’, Schefflera elegantissima ‘Gemini’, Schefflera arboricola ‘Gold Capella’, Spathiphyllum ‘Ty's Pride’). Ethylene treatment hastened leaf and bract abscission or senescence. The responsiveness of plants to ethylene varied considerably; six genotypes were sensitive to 0.1 μL·L−1 ethylene, whereas three genotypes required exposure to 10 μL·L−1 ethylene to trigger visible injury. Four genotypes (Asplenium nidus, Chamaedorea elegans ‘Neathe Bella’, Hedera helix ‘Chicago’, Syngonium podophyllum ‘White Butterfly’) included in our study were insensitive to ethylene. Treating Aglaonema ‘Mary Ann’, Polyscias fruticosa ‘Castor’, and Schefflera arboricola ‘Gold Capella’ plants with 0.9 μL·L−1 1-methylcyclopropene (1-MCP, provided as EthylBloc™), a gaseous ethylene-binding inhibitor, for 4 to 5 h at 21 °C reduced the deleterious effects of ethylene. The release of 1-MCP from two sachets containing EthylBloc™ into a single shipping box also protected Aphelandra squarrosa ‘Dania’, Euphorbia milii ‘Gaia’, Polyscias fruticosa ‘Elegans’, and Schefflera arboricola ‘Gold Capella’ plants from ethylene injury after simulated transport. Our data reveal the genetic variation in ethylene sensitivity among potted foliage plants and highlight genotypes that benefit from 1-MCP treatment.

Free access

Terril A. Nell, Ria T. Leonard, and James E. Barrett

Production irradiance levels on growth, light compensation point (LCP), dark respiration (DR), and interior longevity of potted chrysanthemum (Demfranthema grandiflora Tzvelev. cvs. Iridon and Mountain Peak) and poinsettia (Euphorbia pulcherrima Wind. cvs. Annette Hegg Dark Red and Gutbier V-10 Amy) were determined. LCP and DR were measured at anthesis and during acclimatization to interior conditions (10 μmol·s-1·m-2). Days to flowering, inflorescence diameter, total chlorophyll, and interior longevity of chrysanthemum increased when maintained at a mean maximum photosynthetic photon flux density (PPFD) of 500 μmol·s-1·m-2 compared to plants shifted to 300 or 100 μmol·s-1·m-2 8 weeks after planting. LCP and DR were highest at anthesis and were reduced 38% and 49%, respectively, for chrysanthemum and 19% and 42%, respectively, for poinsettia within 3 days in interior conditions. Chrysanthemum plants shifted to 300 μmol·s1·m-2 during production had lower LCP and DR rates at anthesis and throughout time in interior conditions compared to plants maintained at 500 μmol·s-1·m-2. The acclimatization of chrysanthemum to reduced production PPFD is of little significance because interior longevity is reduced. No differences were found in the LCP or DR of poinsettia or chrysanthemum cultivars that differ in interior performance, demonstrating that these physiological characteristics are not good indicators of interior longevity for chrysanthemum and poinsettia.

Free access

Andrew J. Macnish, Ria T. Leonard, and Terril A. Nell

The vase life of many cut flowers is often limited by bacterial occlusion of stem bases. In this study, we tested the efficacy of a novel antimicrobial agent, aqueous chlorine dioxide (ClO2), to extend the longevity of cut Gerbera flowers by reducing the number of bacteria in vase water. Commercially mature and freshly cut Gerbera jamesonii `Monarck' flowers were placed into clean vases containing deionized water and 0, 2, 5, 10, 20, and 50 μL·L-1 ClO2. Stems were then maintained in solutions at 21 ± 0.5 °C and 42 ± 11% relative humidity until the end of vase life. Inclusion of 2, 5, and 10 μL·L-1 ClO2 in vase water had beneficial effects on flower longevity. For instance, treatment with 5 and 10 μL·L-1 ClO2 extended flower longevity by 1.4-fold or 3.7 days, as compared to control flowers (0 μL·L-1 ClO2). In contrast, exposure to the higher concentrations of 20 and 50 μL·L-1 ClO2 did not extend flower vase life. Relative to control flowers, treatment with 10 μL·L-1 ClO2 delayed the onset of detectable bacterial colonization of vase solutions from day 3 to day 6 of vase life. However, this ClO2 treatment did not reduce the number of bacteria that subsequently accumulated in vase water as compared to control flowers. Treatment with 10 μL·L-1 ClO2 also increased rates of solution uptake by stems and reduced the loss of flower fresh weight over time. These results highlight the potential use of ClO2 treatments to extend the postharvest longevity of Gerbera flowers.

Free access

Terril A. Nell, James E. Barrett, and Ria T. Leonard

Free access

Andrew J. Macnish, Ria T. Leonard, and Terril A. Nell

The postharvest longevity of fresh-cut flowers is often limited by the accumulation of bacteria in vase water and flower stems. Aqueous chlorine dioxide is a strong biocide with potential application for sanitizing cut flower solutions. We evaluated the potential of chlorine dioxide to prevent the build-up of bacteria in vase water and extend the longevity of cut Matthiola incana `Ruby Red', Gypsophila paniculata `Crystal' and Gerbera jamesonii `Monarch' flowers. Fresh-cut flower stems were placed into sterile vases containing deionized water and either 0.0 or 2 μL·L–1 chlorine dioxide. Flower vase life was then judged at 21 ± 0.5 °C and 40% to 60% relative humidity. Inclusion of 2 μL·L–1 chlorine dioxide in vase water extended the longevity of Matthiola, Gypsophila and Gerbera flowers by 2.2, 3.5, and 3.4 days, respectively, relative to control flowers (i.e., 0 μL·L–1). Treatment with 2 μL·L–1 chlorine dioxide reduced the build-up of aerobic bacteria in vase water for 6 to 9 days of vase life. For example, addition of 2 μL·L–1 chlorine dioxide to Gerbera vase water reduced the number of bacteria that grew by 2.4- to 2.8-fold, as compared to control flower water. These results confirm the practical value of chlorine dioxide treatments to reduce the accumulation of bacteria in vase water and extend the display life of cut flowers.

Free access

Terril A. Nell, Ria T. Leonard, and James E. Barrett

Postproduction characteristics of the new poinsettia cultivar `Freedom', as influenced by production and postproduction treatments, were evaluated. In one study, plants were grown under three production irradiance levels consisting of 450, 675 or 900 μmol s-1m-2 at 18/24C or 22/28C night/day temperatures and moved at anthesis to postproduction conditions (10 μmol s-1m-2 for 12 hr/day, 21±2C). Anthesis was delayed, plant height and diameter decreased, and a reduction in the number and development of cyathia occurred when maintained at low production temperature and irradiance. Leaf drop, which was minimal after 30 days postproduction (< 25%), was unaffected by production treatments, while cyathia drop was accelerated by low production irradiance and temperature, but not reduced after 30 days.

Leaf retention and quality in postproduction conditions are excellent. Cyathia drop averages 40 to 50% after 2 weeks in postproduction conditions. Bracts and leaves maintain their color well, with only slight fading after 30 days. Plants exhibit slight epinasty after shipping, but recover within a couple of days. These characteristics of `Freedom' make it a promising variety for the future.

Free access

Terril A. Nell, Ria T. Leonard, A.A. De Hertogh, and James E. Barrett

Potted Lilium Asiatic hybrids `Aristocrat', `Horizon', and `Polka' were evaluated following 3, 6, or 9 days of transport at 2, 7, or 13C. `Aristocrat' and `Horizon' withstood transport with little or no effect on floral bud opening. `Polka' was the most sensitive cultivar to transport, where bud opening decreased 33% when transported at 13C for 9 days. Most floral buds opened on `Aristocrat' (90% to 98%), while fewer buds opened on `Horizon' (37% to 56%) and `Polka' (52% to 90%). Individual flower longevity and diameters were largely unaffected by transport. Plant longevity was reduced 4 to 7 days when transported for 9 days at ≥7C or for >3 days at 13C. Plant longevity averaged 16 days for `Aristocrat' and `Polka' and 12 days for `Horizon'. `Aristocrat' and the Oriental potted hybrid lily `Star Gazer' were maintained at postproduction conditions of 18, 21, or 24C at 7 or 14 μmol·m–2·s–1 after being commercially transported for 4 days at 5 ± 2C. Postproduction conditions had no effect on floral bud opening of `Aristocrat' (98% to 99%), while bud opening of `Star Gazer' was reduced 17% at 24C compared to 18C. Plants lasted 4 and 9 days longer at 18C than at 21 or 24C, respectively. Foliar discoloration was greatest at 24C. Irradiance level had no effect on the variables evaluated.

Free access

Terril A. Nell, Ria T. Leonard, A.A. De Hertogh, Lena Gallitano, and James E. Barret

Postproduction evaluations of two cultivars each of Amaryllis (Hippeastrum), calla lily, Freesia, lily, and paperwhite Narcissus were conducted under postproduction temperatures of 18, 21 and 24C and irradiance levels of 7 or 14 μmol·m-2·s-1. Amaryllis longevity ranged from 10 to 24 days, with an increase of 7 to 10 days at 18C. Excessive stem elongation occurred and was greatest at 24C. Calla lily longevity ranged from 33 to 68 days, with up to a 25-day increase at 18C and 14 μmol·m-2·s-1. Freesia lasted 24 to 33 days with an increase of 6 to 9 days at 18C. Leaf yellowing and stalk elongation was a common problem of Freesia, especially at 24C. Lilies lasted 17 to 31 days, with an increase of 9 to 11 days at 18C. Asiatic lilies were superior to Oriental lilies. Paperwhite Narcissus lasted 13 to 27 days, increasing up to 10 days at 18C. Cultivar differences in longevity and quality were observed. Optimum postproduction conditions ranged from 18 to 21C at an irradiance of 14 μmol·m-2·s-1 for best quality and longevity.

Free access

Trinidad Reyes, Terril A. Nell, Charles A. Conover, and James E. Barrett

Effects of three light intensities (564, 306 and 162 μmol m-2 s-1) and three fertilizer rates (220, 440 and 880 mg/15 cm pot, weekly) were evaluated on acclimatization potential of Chamaedorea elegans. Treatments were applied during four months under greenhouse conditions after which plants were placed indoors (20 μmol m-2 s-1, 21±2C and 50% RH) for two months. Light compensation point (LCP) was significantly reduced by decreasing light intensity and increasing fertilizer rates. Leaf and root fresh and dry weights increased with irradiance while shoots were not affected. Chlorophyll a levels were higher in plants grown under the lowest light intensity. Carbohydrate content is being analyzed and anatomical examination of leaves studied. Plant performance indoors will be discussed. These studies demonstrate that Chamaedorea, a monocot, acclimatizes similarly to dicots.

Free access

Trinidad Reyes, Terril A. Nell, James E. Barrett, and Charles A. Conover

The effect of irradiance and fertilizer level on the acclimatization of Chamaedorea elegans Mart. was studied. Chamaedorea elegans was grown for 4 months in 1.6-liter pots under 162, 306, or 564 μmol·m–2·s–1 and fertilized weekly with 20N–4.7P–16.6K soluble fertilizer at 220, 440, or 880 mg/pot. At the end of the production period, plants were moved to interior rooms and maintained for 2 months at 20 μmol·m–2·s–1 for 12 h daily at 21 ± 1C and a relative humidity of 50% ± 5%. At the end of the production phase, the light compensation point (LCP) and the concentration of nonstructural carbohydrates were lower, and chlorophyll concentration was higher the lower the irradiance level. Increasing fertilizer concentration decreased the number of fronds, LCP, and nonstructural carbohydrates. After 2 months in the interior environment, LCP and number of fronds of C. elegans did not differ among treatments. Chlorophyll concentration of plants grown under 564 μmol·m–2·s–1 had increased 61%, while starch in the stem had decreased 43% relative to the concentration found at the end of the production period. In C. elegans grown under 306 μmol·m–2·s–1, stem starch depletion was only 13% during the interior evaluation period. These results indicated that C. elegans grown under the highest irradiance level used reserved carbohydrates in the interior environment while adjusting to low light and producing new leaves. Chamaedorea elegans was best acclimatized at the intermediate irradiance and medium fertilizer concentration.