Search Results

You are looking at 31 - 40 of 56 items for

  • Author or Editor: Timothy K. Broschat x
  • User-accessible content x
Clear All Modify Search
Full access

Timothy K. Broschat

Release rates at 21 °C were determined in sand columns for 12 commercially available soluble and controlled-release Mg fertilizers. Lutz Mg spikes, K2SO4, MgSO4, MgSO4·H2O, and MgSO4·7H2O released their Mg within 2 to 3 weeks. Within the first 6 weeks, MgO·MgSO4 released its soluble Mg fraction, but little release occurred thereafter. Dolomite and MgO released <5% of their Mg over 2 years while MagAmp released <20% of its Mg. Florikan 1N-0P-26K-4Mg types 100 and 180 exhibited typical controlled-release fertilizer characteristics, with most of their Mg release occurring during the first 15 weeks.

Full access

Timothy K. Broschat

Royal palms [Roystonea regia (HBK.) O.F. Cook], coconut palms (Cocos nucifera L. `Malayan Dwarf'), queen palms [Syagrus romanzoffiana (Chamisso) Glassman], and pygmy date palms (Phoenix roebelenii O'Brien) were grown in a rhizotron to determine the patterns of root and shoot growth over a 2-year period. Roots and shoots of all four species of palms grew throughout the year, but both root and shoot growth rates were positively correlated with air and soil temperature for all but the pygmy date palms. Growth of primary roots in all four species was finite for these juvenile palms and lasted for only 5 weeks in royal palms, but ≈7 weeks in the other three species. Elongation of secondary roots lasted for only 9 weeks for coconut palms and less than half of that time for the other three species. Primary root growth rate varied from 16 mm·week-1 for coconut and pygmy date palms to 31 mm·week-1 for royal palms, while secondary root growth rates were close to 10 mm·week-1 for all species. About 25% of the total number of primary roots in these palms grew in contact with the rhizotron window, allowing the prediction of the total root number and length from the sample of roots visible in the rhizotron. Results indicated that there is no obvious season when palms should not be transplanted in southern Florida because of root inactivity.

Free access

Timothy K. Broschat

Natural distribution patterns of boron (B) among leaves within a canopy, among leaflets within a leaf, and within single leaflets were determined for coconut palm (Cocos nucifera L.) and within leaves for paurotis palm [Acoelorrhaphe wrightii (Griseb. & H. Wendl.) Becc.]. Leaf B concentrations did not vary significantly among leaves within the canopy or among leaflets within a single leaf for coconut palm, but basal leaflets of paurotis palm had higher B concentrations than central leaflets. Boron concentrations were significantly higher toward the tips of individual leaflets in both species. Application of Solubor to the soil significantly increased leaf B concentrations in all leaves of coconut palm after 2 months as well as in new leaves produced up to 6 months later. Application of Solubor as a leaf axil drench was much less effective in increasing foliar B concentrations than soil treatment.

Free access

Timothy K. Broschat and Henry Donselman

Full access

Timothy K. Broschat and Kimberly K. Moore

In two experiments, chinese hibiscus (Hibiscus rosa-sinensis), bamboo palm (Chamaedorea seifrizii), areca palm (Dypsis lutescens), fishtail palm (Caryota mitis), macarthur palm (Ptychosperma macarthurii), shooting star (Pseuderanthemum laxiflorum), downy jasmine (Jasminum multiflorum), plumbago (Plumbago auriculata), alexandra palm (Archontophoenix alexandrae), and foxtail palm (Wodyetia bifurcata) were transplanted into 6.2-L (2-gal) containers. They were fertilized with Osmocote Plus 15N-3.9P-10K (12-to14-month formulation) (Expt. 1) or Nutricote Total 18N-2.6P-6.7K (type 360) (Expt. 2) applied by either top dressing, substrate incorporation, or layering the fertilizer just below the transplanted root ball. Shoot dry weight, plant color, root dry weights in the upper and lower halves of the root ball, and weed shoot dry weight were determined when each species reached marketable size. Optimal fertilizer placement method varied among the species tested. With the exception of areca palm, none of the species tested grew best with incorporated fertilizer. Root dry weights in the lower half of the root ball for chinese hibiscus, bamboo palm, and downy jasmine were greatest when the fertilizer was layered and root dry weights in the upper half of the root ball were greatest for top-dressed chinese hibiscus. Weed growth was lower in pots receiving layered fertilizer for four of the six palm species tested.

Free access

Timothy K. Broschat and Kimberly K. Moore

Zonal geraniums (Pelargonium ×hortorum) from seed and african marigolds (Tagetes erecta), which are known to be highly susceptible to Fe toxicity problems, were grown with I, 2, 4, or 6 mm Fe from ferrous sulfate, ferric citrate, FeEDTA, FeDTPA, FeEDDHA, ferric glucoheptonate, or ferrous ammonium sulfate in the subirrigation solution. FeEDTA and FeDTPA were highly toxic to both species, even at the 1 mm rate. Ferrous sulfate and ferrous ammonium sulfate caused no visible toxicity symptoms on marigolds, but did reduce dry weights with increasing Fe concentrations. Both materials were slightly to moderately toxic on zonal geraniums. FeEDDHA was only mildly toxic at the 1 mm concentration on both species, but was moderately toxic at the 2 and 4 mm concentrations. Substrate pH was generally negatively correlated with geranium dry weight and visible phytotoxicity ratings, with the least toxic materials, ferrous sulfate and ferrous ammonium sulfate, resulting in the lowest substrate pHs and the chelates FeEDTA, FeDTPA, and FeEDDHA the highest pH. The ionic Fe sources, ferrous sulfate and ferrous ammonium sulfate, suppressed P uptake in both species, whereas the Fe chelates did not. Fe EDDHA should be considered as an effective and less toxic alternative for the widely used FeEDTA and FeDTPA in the production of these crops.

Free access

Sven E. Svenson and Timothy K. Broschat

The root distribution of seedlings of Acoelorrhaphe wrightii, Carpentaria acuminata, Chrysalidocarpus lutescens, Livistona chinensis, Phoenix roebellenii, and Washingtonia robusta were grown in nontreated containers or in containers treated on their interior surfaces with 25, 50 or 100 g CU(OH)2/1. Seedlings of all species grown in treated containers had reduced circling or matted roots at the container wall-growing medium interface. The distribution of root dry weight and root length was species specific, and was significantly influenced by the rate of copper hydroxide applied. Copper treatment did not induce visual signs of copper toxicity, nor differences in shoot growth, nor differences in the number of higher-order lateral roots.

Full access

Timothy K. Broschat and Kimberly A. Klock-Moore

Areca palms [Dypsis lutescens (H. Wendl.) Beentje & J. Dransf.], spathiphyllums (Spathiphyllum Schott. `Figaro'), ixoras (Ixora L. `Nora Grant'), tomatoes (Lycopersicon esculentum Mill. `Floramerica'), marigolds (Tagetes erecta L. `Inca Gold'), bell peppers (Capsicum annuum L. `Better Bell'), and pentas [Pentas lanceolata (Forssk.) Deflers. `Cranberry'] were grown in a pine bark-based potting substrate and were fertilized weekly with 0, 8, 16, 32, or 64 mg (1.0 oz = 28,350 mg) of P per pot. Shoot, and to a much lesser extent, root dry weight, increased for all species as weekly P fertilization rate was increased from 0 to 8 mg/pot. As P fertilization was increased from 8 to 64 mg/pot, neither roots nor shoots of most species showed any additional growth in response to increased P. Root to shoot ratio decreased sharply as P fertilization rate was increased from 0 to 8 mg/pot, but remained relatively constant in response to further increases in P fertilization rate.

Full access

Kimberly A. Klock-Moore and Timothy K. Broschat

Two experiments were conducted to compare the growth of `Ultra White' petunia (Petunia ×hybrida) plants in a subirrigation system versus in a hand-watered system. In Expt. 1, petunia plants were watered with 50, 100, or 150 ppm (mg·L-1) of N of Peter's 20-10-20 (20N-4.4P-16.6K) and in Expt. 2, Nutricote 13-13-13 (13N-5.8P-10.8K) type 100, a controlled release fertilizer, was incorporated into the growing substrate, prior to transplanting, at rates of 3, 6, or 9 lb/yard3 (1.8, 3.6, or 4.5 kg·m-3). In both experiments, there was no difference in petunia shoot dry mass or final flower number between the irrigation systems at the lowest fertilization rate but differences were evident at the higher fertilization rates. In Expt. 1, shoot dry mass and flower number of subirrigated petunia plants fertilized with 100 ppm of N was greater than for hand-watered plants fertilized at the same rate. However, subirrigated petunia plants fertilized with 150 ppm of N were smaller with fewer flowers than hand-watered petunia plants fertilized with 150 ppm of N. Substrate electrical conductivity (EC) concentrations for petunia plants subirrigated with 150 ppm of N were 4.9 times greater than concentrations in pots hand-watered with 150 ppm of N. In Expt. 2, subirrigated petunia plants fertilized with 6 and 9 lb/yard3 were larger with more flowers than hand-watered plants fertilized at the same rates. Although substrate EC concentrations were greater in subirrigated substrates than in hand-watered substrates, substrate EC concentrations of all hand-watered plants were about 0.35 dS·m-1. Subirrigation benches similar to those used in these experiments, appear to be a viable method for growing `Ultra White' petunia plants. However, the use of Peter's 20-10-20 at concentrations greater than 100 ppm of N with subirrigation appeared to be detrimental to petunia growth probably because of high EC concentrations in the substrate. On the other hand, the use of subirrigation with Nutricote 13-13-13 type 100 incorporated at all of the rates tested did not appear to be detrimental to petunia growth.

Full access

Timothy K. Broschat and Kimberly A. Moore

Salvia (Salvia splendens) `Red Vista' or `Purple Vista,' french marigold (Tagetes patula) `Little Hero Orange,' bell pepper (Capsicum annuum) `Better Bell,' impatiens (Impatiens wallerana) `Accent White,' and wax begonia (Begonia ×semperflorens-cultorum) `Cocktail Vodka' were grown in 0.95-L (1-qt) containers using a 5 pine bark: 4 sedge peat: 1 sand substrate (Expts. 1 and 2) or Pro Mix BX (Expt. 2 only). They were fertilized weekly with 50 mL (1.7 fl oz) of a solution containing 100, 200, or 300 mg·L-1 (ppm) of nitrogen derived from 15N-6.5P-12.5K (1N-1P2O5-1K2O ratio) or 21N-3P-11.7K (3N-1P2O5-2K2O ratio) uncoated prills used in the manufacture of controlled-release fertilizers. Plants grown with Pro Mix BX were generally larger and produced more flowers or fruit than those grown with the pine bark mix. With few exceptions, plant color, root and shoot dry weights, and number of flowers or fruit were highly correlated with fertilization rate, but not with prill type. There appears to be little reason for using the more expensive 1-1-1 ratio prills, since they generally did not improve plant quality and may increase phosphorous runoff from bedding plant nurseries.