Search Results

You are looking at 31 - 40 of 40 items for

  • Author or Editor: Steven A. Sargent x
  • Refine by Access: User-accessible Content x
Clear All Modify Search
Full access

Adrian D. Berry, Steven A. Sargent, Marcio Eduardo Canto Pereira, and Donald J. Huber

Two Guatemalan-West Indian avocado (Persea americana) hybrids (‘Monroe’ and ‘Booth 8’) were treated with an aqueous formulation of 1-methylcyclopropene (1-MCP) to determine effects on ripening and quality during storage simulating commercial shipping temperatures. Fruit harvested at preclimacteric stage were immersed in aqueous 1-MCP at 75 μg·L−1 (1.39 mmol·m−3) or in deionized water for 1 minute, stored at 10 °C for 14 days, and then transferred to 20 °C until ripe. Respiration rate, ethylene production, softening, and change in epidermal hue* angle were delayed and/or suppressed in both cultivars exposed to 1-MCP, although effects were less pronounced with Booth 8. Hue* angles for 1-MCP-treated ‘Monroe’ fruit had the highest values (darkest green peel color) of all treatments at full-ripe stage (hue* angle = 117). For control and treated ‘Monroe’ fruit respiration peaked on days 15 and 21, while ethylene production from both treatments peaked on day 16. Respiration and ethylene production peaked on day 16 for both control and 1-MCP–treated ‘Booth 8’ fruit. Fruit treated with 1-MCP consistently showed diminished respiration and ethylene peaks. Days to full-ripe stage were unaffected by treatment. ‘Booth 8’ fruit from both treatments were considered ripe (15 N whole fruit firmness) after 17 days; however, only 8% of control fruit were marketable, whereas 58% of 1-MCP-treated fruit were marketable, based on subjective appearance ratings using the Jenkins–Wehner score. The development of peel blemishes during storage was the primary cause of unmarketable fruit. ‘Monroe’ control and 1-MCP–treated fruit were soft after about 22 days and were significantly more marketable (control 70% and 1-MCP 85%). Avocados treated with 1-MCP ripened over a longer period than control fruit but maintained a higher percentage of marketable fruit.

Free access

Renar J. Bender, Jeffrey K. Brecht, Steven A. Sargent, and Donald J. Huber

`Haden' and `Tommy Atkins' mangoes (Mangifera indica L.) were stored in air, 2, 3, 4 or 5 kPa O2 plus N2, or 25 kPa CO2 plus air for 14 days at 15 °C or 21 days at 12 °C, respectively, then in air for 5 days at 20 °C to determine their tolerance to reduced O2 levels for storage times encountered in typical marine shipments. All low O2 treatments reduced mature green mango respiration (CO2 production), however, elevated ethanol production occurred in 2 and 3 kPa O2 storage, with the levels two to three times higher in `Tommy Atkins' than `Haden'. In contrast, `Haden' fruit at the onset of the climacteric also accumulated ethanol in 4 kPa O2 and produced 10 to 20-fold more ethanol in 2 and 3 kPa O2 than preclimacteric fruit. While there were no visible injury symptoms, off flavor developed in mature green fruit at 2 kPa O2 and in ripening initiated fruit at 2 and 3 kPa O2. Ethanol production was not affected by storage in 25 kPa CO2. Ethylene production was reduced slightly by low O2, however, `Haden' fruit also showed a residual inhibitory effect on ethylene production after 2 or 3 kPa O2 storage, while `Tommy Atkins' fruit stored in 2 kPa O2 produced a burst of ethylene upon transfer to air at 20 °C. Fruit firmness, total sugars, and starch levels did not differ among the treatments, but 2, 3 or 4 kPa O2 and 25 kPa CO2 maintained significantly higher acidity than 5 kPa O2 or air. The epidermal ground color responded differently to low O2 and high CO2 in the two mango cultivars. Only 2 kPa O2 maintained `Haden' color better than air, while all low O2 levels maintained `Tommy Atkins' color equally well and better than air. High CO2 was more effective than low O2 in maintaining `Haden' color, but had about the same effect as low O2 on `Tommy Atkins'. Results indicate that preclimacteric `Haden' and `Tommy Atkins' mango fruit are able to tolerate 3 kPa O2 for 2 or 3 weeks at 12 to 15 °C and that tolerance to low O2 decreases as mangoes ripen. Results also show that low O2 and high CO2 affect mango ripening differentially.

Free access

Marcos D. Ferreira, Steven A. Sargent, Jeffrey K. Brecht, and Craig K. Chandler

Strawberry (Fragaria ×ananassa Duch.) fruit are very susceptible to mechanical injury and for this reason are normally field-packed. Fruit of three cultivars (Chandler, Oso Grande, Sweet Charlie) were subjected to forced-air or hydrocooling to reach pulp temperatures between 1 and 30 °C and then individually subjected to compression and impact forces representative of commercial handling operations. Strawberries with a pulp temperature of 24 °C exhibited sensitivity to compression but greater resistance to impacts. As pulp temperature decreased, fruit were less susceptible to compression as shown by up to 60% reduction in bruise volume. In contrast, strawberries at 1 °C pulp temperature had more severe impact bruising with up to 93% larger bruise volume than at 24 °C depending on the cultivar. Strawberries also showed different impact bruise susceptibility depending on the cooling method. Impacted fruit that were forced-air cooled had larger bruise volumes than those that were hydrocooled. The impact bruise volume for strawberries forced-air cooled to 1 °C was 29% larger than for fruit hydrocooled to 20 °C, 84% higher than those forced-air cooled to 20 °C, and 164% higher than those hydrocooled to 1 °C. Because incidence and severity of impact and compression bruises are temperature-dependent, strawberry growers should consider pulp temperature for harvest scheduling and for potential grading on a packing line. Hydrocooling shows promise to rapidly cool strawberry fruit while reducing weight loss and bruising sensitivity.

Free access

Fernando Maul, Steven A. Sargent, Murat O. Balaban, Elizabeth A. Baldwin, Donald J. Huber, and Charles A. Sims

The effect of physiological maturity at harvest on ripe tomato (Lycopersicon esculentum Mill.) volatile profiles was studied using ripening response time (in days) to 100 μL·L-1 exogenous ethylene treatment as a tool to separate immature-green from mature-green fruit. Electronic nose (EN) sensor array and gas chromatography (GC) analyses were used to document volatile profile changes in tomatoes that required a 1-, 3-, or 5-day ethylene treatment to reach the breaker stage. EN output analysis using multivariate discriminant and canonical analyses classified intact tomato and whole tomato homogenate samples that required 3 or 5 days of ethylene treatment as significantly different (P < 0.01) from those that required only 1 day. The GC aroma profiles from whole tomato homogenate showed that 1-day fruit had significantly higher levels (P < 0.05) of 1-penten-3-one, cis-3-hexenal, 6-methyl-5-hepten-2-one, 2-isobutylthiazole, and geranylacetone when compared to 5-day fruit. Analysis of excised tomato tissues showed that pericarp (including columnella) produced an average 219% greater concentration of the 16 aroma volatiles quantified by GC when compared to locular gel (442 and 203 μL·L-1, respectively). EN analysis concurred with GC by showing greater average Mahalanobis distance between pericarp tissue groupings when compared to locular gel groupings (78.25 and 12.33 units, respectively). Pericarp tissue from the 5-day ethylene treatment showed significantly lower levels of 1-penten-3-one, trans-2-heptenal, 6-methyl-5-hepten-2-one, 2-isobutylthiazole, geranylacetone, and β-ionone compared to the 1- and 3-day treatments, Similarly, locular gel from the 3- and 5-day ethylene treatments had significantly lower levels of 1-penten-3-one, 2-isobutylthiazole, and 1-nitro-2-phenylethane compared to 1-day samples. cis-3-Hexenol in locular gel was the only volatile compound that showed significantly higher levels with increasing ethylene treatment. EN analysis showed greater Mahalanobis distances between 1- and 3-day ethylene samples than between 3- and 5-day ethylene samples (32.09 and 12.90, 24.14 and 6.52, 116.31 and 65.04, and 15.74 and 13.28 units, for intact tomato, whole tomato, pericarp, and locular gel homogenate, respectively).

Full access

Marcio Eduardo Canto Pereira, Steven A. Sargent, Charles A. Sims, Donald J. Huber, Celso Luiz Moretti, and Jonathan H. Crane

The ethylene inhibitor 1-methylcyclopropene (1-MCP) delays ripening of avocado (Persea americana) and many other fruits, but there are few reports of the influence of this ethylene inhibitor on sensory attributes. The objective of this study was to evaluate the effects of aqueous 1-MCP on fruit ripening and sensory attributes of ‘Beta’ avocado, a Guatemalan-West Indian hybrid. Treatment with aqueous 1-MCP at 2.77 μmol·L−1 (150 μg·L−1) for 1 minute effectively delayed ripening by 6 days, delaying the onset of climacteric and lowering respiration rates as compared with control. Treated fruit had greener peel and firmer pulp when ripe, and untrained sensory panelists could not detect differences in texture, flavor, and overall liking between treated and untreated fruit. Immersion of ‘Beta’ avocado in aqueous 1-MCP extended the shelf life to 14 days at 20 °C and 84% relative humidity, an increase of 6 days (75%) as compared with untreated fruit, without compromising sensory acceptability. This technology has the potential to permit shipment of these fruit to more distant markets than currently possible.

Open access

Catherine E. Belisle, Steven A. Sargent, Jeffrey K. Brecht, Germán V. Sandoya, and Charles A. Sims

The postharvest life of lettuce (Lactuca sativa) is variable and negatively affected by mechanical injury, incomplete cooling, and poor genetic quality. Lettuce breeders are developing cultivars with a longer shelf life and rely on subjective, destructive, and time-consuming methods for quality analysis. One method of accelerating quality evaluations is known as accelerated shelf-life testing (ASLT), which has the potential to assist breeders in assessing lettuce quality and shelf life. The objective of this research was to determine the quality traits that significantly affect shelf life to develop an ASLT procedure to rapidly assess the postharvest quality of lettuce accessions in breeding programs. In Test 1, Romaine lettuce quality was evaluated using one subjective and five objective parameters during storage at 5, 10, 15, or 20 °C. Results determined that weight loss, lightness*, and hue* angle were best correlated with the overall appearance rating, whereas storage at 10 or 15 °C differentiated the shelf-life potential quickly and without excessive deterioration. In Test 2, these objective characteristics and storage temperatures were used to study rates of quality deterioration of a commercial Romaine cultivar (Okeechobee) and a breeding line (60182), both with long shelf lives, and a Batavia lettuce cultivar (La Brillante) with a short shelf life. Lettuce was evaluated during storage at 10 °C (winter and spring seasons) or at 15 °C (winter season). Weight loss was the most appropriate quality index for lettuce at these storage temperatures for a single harvest, whereas lightness* and hue* angle were the most appropriate indices for comparing quality between harvests. To apply ASLT to postharvest assessments of lettuce, breeders and other researchers should include two controls with good and poor shelf life (similar to ‘Okeechobee’ and ‘La Brillante’, respectively) as standard baseline cultivars during storage at either 10 or 15 °C.

Open access

Francisco E. Loayza, Michael T. Masarirambi, Jeffrey K. Brecht, Steven A. Sargent, and Charles A. Sims

This study investigated the effect of ethylene treatment at high temperatures of 30 to 40 °C for up to 72 hours on subsequent ripening-associated processes in mature green ‘Sunny’ and ‘Agriset 761’ tomatoes (Solanum lycopersicum). Compared with ethylene-treated fruit at 20 °C, ethylene exposure at 30 or 35 °C stimulated ripening in terms of ethylene biosynthesis and color development, but the ethylene effect was only apparent after transfer to air at 20 °C. There were no negative effects on ripe tomato quality related to ethylene exposure at 30 or 35 °C. However, ethylene production of tomatoes was permanently impaired by ethylene exposure at 40 °C for 48 or 72 hours even after transferring fruit to air at 20 °C; these fruit exhibited slow softening and color development. Our results suggest that tomatoes perceive ethylene at 30 to 35 °C despite impairment of ripening at those temperatures, with the accelerated ripening response becoming apparent only after transferring the tomatoes to air at lower temperature.

Open access

Jaysankar De, Bruna Bertoldi, Mohammad Jubair, Alan Gutierrez, Jeffery K. Brecht, Steven A. Sargent, and Keith R. Schneider

Florida peaches (Prunus persica) typically are picked and placed in a cold room on the day of harvest, then packed and shipped the next day. This room cooling (RC) is slow, requiring ≈24 hours or more for the fruit to reach optimal temperature (6 to 7 °C). There is currently limited research on the effect of cooling practices on microbial quality of peaches, yet this study is essential for decision making in areas such as upgrading packing house facilities and the implementation of improved handling procedures. This research compared the efficacies of postharvest cooling by RC, forced-air cooling (FAC), and hydrocooling with sanitizer (HS) treatment of peaches to reduce their surface microbial population and to determine the effect on shelf life and microbial quality. Three trials for RC and two trials each for FAC and HS were performed. Following cooling, fruit were stored at 1 °C. The average aerobic plate count (APC) from field samples was 5.29 log cfu/peach, which remained unchanged after RC or FAC but was reduced significantly (P < 0.05) to 4.63 log cfu/peach after HS. The average yeast and mold counts (Y&M) from field samples (6.21 log cfu/peach) were reduced highly significantly (P < 0.001) to 4.05 log cfu/peach after HS. Hydrocooling significantly (P < 0.05) reduced the APC and Y&M counts from the peaches and showed promise in maintaining the microbiological quality of the fruit throughout storage. However, at the end of the 21-day storage period, there was no significant difference in APC or Y&M counts from peaches, irrespective of the cooling methods. Peaches that went through the hydrocooling process and were subsequently packed showed an increase (P < 0.05) in both APC and Y&M counts, while fruit that were not hydrocooled showed no such increase. Information obtained will be used to recommend the best temperature management practices for maintaining the postharvest quality of peaches. A detailed cost-benefit analysis of different cooling methods and the time interval between harvest and shipment are both necessary for a more conclusive recommendation.

Open access

Jaysankar De, Aswathy Sreedharan, You Li, Alan Gutierrez, Jeffrey K. Brecht, Steven A. Sargent, and Keith R. Schneider

Cooling procedures used by blueberry (Vaccinium sp.) growers often may include delays up to 24 hours that can damage the fruit through rough handling and adverse temperatures, thereby potentially compromising quality and, subsequently, safety. The objectives of this experiment were to compare forced-air cooling (FAC) compared to hydrocooling without sanitizer (HW) and hydrocooling with sanitizer (HS) regarding the quality and shelf life of southern highbush blueberry [SHB (Vaccinium corymbosum)] and to determine the efficacy of these treatments for reducing Salmonella in SHB. Freshly harvested SHB that were inoculated with a five-serovar cocktail of rifampin-resistant Salmonella were rapidly chilled by FAC or hydrocooling (HW and HS) using a laboratory model system. FAC did not show any significant reduction (P > 0.05) in Salmonella or in the effects on the microbiological quality of blueberries. HW and HS reduced Salmonella by ≈2 and >4 log cfu/g SHB, respectively, on day 0. These postharvest treatments were also evaluated for their ability to help maintain fruit quality throughout a storage period of 21 days at 1 °C. Hydrocooling (both HS and HW) provided more rapid cooling than FAC. Hydrocooled blueberries showed significant weight gain (P < 0.05), whereas FAC resulted in a slight, but insignificant (P > 0.05), reduction in final weight. The results of hydrocooling, both HS and HW, shown in this study could help to extend the shelf life while maintaining or increasing the microbiological quality of fresh market blueberries. Information obtained by this study can be used for developing the best temperature management practices to maintain the postharvest safety and quality of blueberries.

Free access

Lucianne Braga Oliveira Vilarinho, Derly Jose Henriques da Silva, Ann Greene, Kara Denee Salazar, Cristiane Alves, Molly Eveleth, Ben Nichols, Sana Tehseen, Joseph Kalil Khoury Jr., Jodie V. Johnson, Steven A. Sargent, and Bala Rathinasabapathi

Inheritance of fruit-related traits was studied in a population generated by crossing two heirloom pepper (Capsicum annuum) cultivars, Round of Hungary and Bulgarian carrot. Inheritance of corrugated pericarp phenotype of ‘Round of Hungary’ behaved as a recessive trait controlled by two genes while round fruit shape behaved as a single gene. Pungent cultivar Bulgarian carrot had significantly higher total soluble solids, titratable acidity, antioxidant activities, and significantly thinner pericarp than fruit of Round of Hungary. Pericarp thickness was related to differences in both cell number and cell size. Analyses of F2 fruit indicated that fruit weight was positively correlated (P < 0.01) to fruit width and pericarp thickness. Fruit width was negatively correlated (P < 0.01) to fruit length and total soluble solids and positively correlated (P < 0.01) to pericarp thickness. Yellow color was negatively correlated (P < 0.05) to total soluble solids. Fruit length showed high inbreeding depression and transgressive segregation. Color measurements showed that yellow was correlated to lightness, and the relationships between red and yellow color spaces and carotenoid composition were complex.