Search Results

You are looking at 31 - 32 of 32 items for

  • Author or Editor: Jonathan M. Frantz x
  • User-accessible content x
Clear All Modify Search
Free access

Jonathan M. Frantz, Glen Ritchie, Nilton N. Cometti, Justin Robinson, and Bruce Bugbee

The productivity of lettuce in a combination of high light, high temperature, and elevated CO2 has not been commonly studied because rapid growth usually causes a calcium deficiency in meristems called tipburn, which greatly reduces quality and marketability. We eliminated tipburn by blowing air directly onto the meristem, which allowed us to increase the photosynthetic photon flux (PPF) to 1000 μmol·m-2·s-1 (57.6 mol·m-2·d-1); two to three times higher than normally used for lettuce. Eliminating tipburn doubled edible yield at the highest PPF level. In addition to high PPF, CO2 was elevated to 1200 μmol·m-2·mol-1, which increased the temperature optimum from 25 to 30 °C. The higher temperature increased leaf expansion rate, which improved radiation capture and more than doubled yield. Photosynthetic efficiency, measured as canopy quantum yield in a whole-plant gas exchange system, steadily increased up to the highest temperature of 32 °C in high CO2. The highest productivity was 19 g·m-2·d-1 of dry biomass (380 g·d-1 fresh mass) averaged over the 23 days the plants received light. Without the limitation of tipburn, the combination of high PPF, high temperature, and elevated CO2 resulted in a 4-fold increase in growth rate over productivity in conventional environments.

Free access

Dharmalingam S. Pitchay, John Gray, Jonathan M. Frantz, Leona Horst, and Charles Krause

Geranium (Pelargonium ×hortorum) typically follows the C3 metabolic pathway. However, it switches to CAM metabolism under certain abiotic stress environments. This switch may affect the nutritional requirement and appearance of visible deficiency symptoms of these plants. Because potassium (K) plays a key role in stomatal function, K-deficiency was studied in geranium. Plants were grown hydroponically in a glass greenhouse. The treatments consisted of a complete, modified Hoagland's solution with millimolar concentrations of macronutrients, 15 NO3-N, 1.0 PO4-P, 6.0 K, 5.0 Ca, 2.0 Mg, and 2.0 SO4-S and micromolar concentrations of micronutrients, 72 Fe, 9.0 Mn, 1.5 Cu, 1.5 Zn, 45.0 B, and 0.1 Mo, and an additional solution devoid of K. It took longer to develop the classic K deficiency symptoms than other bedding plant species commonly require. The K-stress plants' dry weight was 10% and 37% of control at incipient and advanced stage, respectively. When portions of geranium leaves were covered, symptomology on leaves with K stress developed rapidly (within 2 days) compared to the uncovered portion of the leaf blade. Control plants contained an abundance of marble-shaped K crystals in the adaxial surface of leaf mesophyll, but were lacking in the K-deficient plants. Geranium is more prone to K stress during short days than long days and an additional supply of K would be needed for normal growth in short days.