Search Results

You are looking at 21 - 30 of 56 items for

  • Author or Editor: Timothy K. Broschat x
  • User-accessible content x
Clear All Modify Search
Free access

Timothy K. Broschat

Greenhouse-grown Tapeinochilus ananassae Hassk. were fertilized with 1110, 2220, or 4440 g of Osmocote 17N–3P–10K/m2 per year for 4 years. Plants receiving the medium rate of fertilizer produced the most flowers, while the highest fertilization rate resulted in the fewest. Flower stalk length decreased each year after planting, but cutting back the vegetative shoots to the ground resulted in increased flower stalk length the following year. Fertilization with the highest rate resulted in reduced flower postharvest life, but floral preservatives and ethylene inhibitors had no effect on postharvest life.

Free access

Timothy K. Broschat

Mature pygmy date palms (Phoenix roebelenii O'Brien) having a minimum of 90 cm of clear trunk were transplanted into a field nursery at their original depth or with 15, 30, 60, or 90 cm of soil above the original rootball. Palms planted at the original level or with the visible portion of the root initiation zone buried had the largest canopies, highest survival rates, and lowest incidence of Mn deficiency 15 months after transplanting. Palms planted 90 cm deep had only a 40% survival rate, with small, Mn-deficient canopies on surviving palms. Palms whose original rootballs were planted 90 cm deep had very poor or no root growth at any level, but had elevated Fe levels in the foliage. None of the deeply planted palms produced any new adventitious roots higher than 15 cm above the visible portion of the root initiation zone.

Free access

Timothy K. Broschat

Royal palms [Roystonea regia (HBK.) O.F. Cook], coconut palms (Cocos nucifera L. `Malayan Dwarf'), queen palms [Syagrus romanzoffiana (Chamisso) Glassman], and pygmy date palms (Phoenix roebelenii O'Brien) were grown in a rhizotron to determine the patterns of root and shoot growth over a 2-year period. Roots and shoots of all four species of palms grew throughout the year, but both root and shoot growth rates were positively correlated with air and soil temperature for all but the pygmy date palms. Growth of primary roots in all four species was finite for these juvenile palms and lasted for only 5 weeks in royal palms, but ≈7 weeks in the other three species. Elongation of secondary roots lasted for only 9 weeks for coconut palms and less than half of that time for the other three species. Primary root growth rate varied from 16 mm·week-1 for coconut and pygmy date palms to 31 mm·week-1 for royal palms, while secondary root growth rates were close to 10 mm·week-1 for all species. About 25% of the total number of primary roots in these palms grew in contact with the rhizotron window, allowing the prediction of the total root number and length from the sample of roots visible in the rhizotron. Results indicated that there is no obvious season when palms should not be transplanted in southern Florida because of root inactivity.

Full access

Timothy K. Broschat

Three species of tropical shrubs, bush allamanda (Allamanda schottii), ixora (Ixora ‘Nora Grant’), and surinam cherry (Eugenia uniflora), were planted into a native sand soil and a calcareous fill soil in south Florida and were fertilized with a 24N–0P–9.2K (24–0–11) turf fertilizer or an 8N–0P–10K–6Mg plus micronutrients (8–0–12) palm fertilizer at rates of 10 or 20 g of nitrogen (N) per shrub four times per year. Two additional treatments using a 0–0–13.3K–6Mg plus micronutrients (0–0–16) palm fertilizer were applied at equivalent rates of potassium (K) (12.5 or 25 g/shrub of K) to that applied in the two 8–0–12 palm fertilizer treatments. Shrub size measurements, nutrient deficiency severity ratings, number of flowers, and shrub density ratings were determined at 6 months after planting (establishment period) and at 3 years after planting (maintenance phase). Data from these measured variables were subjected to principal component analysis to obtain a single measure of overall quality, namely, the scores for each plant on the first principal component. During the establishment period, ixora fertilized with the high rate of 8–0–12 had the highest quality on the sand soil, but there were no differences among treatments on the fill soil for this species or on either soil type for allamanda and surinam cherry. After 3 years of growth, ixora showed no differences in quality on either soil in response to the fertilizer treatments. On the sand soil, allamanda receiving the high rate of 24–0–11 or the low rate of 8–0–12 had significantly higher quality than unfertilized control plants, and the low rate of 8–0–12 produced the highest quality plants on the fill soil. Surinam cherry grown on sand soil had the highest qualities when fertilized with the high rates of either 24–0–11 or 8–0–12. In general, leaf nutrient concentrations were inversely correlated with overall shrub quality, with largest, highest quality plants having the lowest nutrient concentrations because of dilution effects. However, leaf manganese (Mn) concentrations were consistently within deficiency ranges for all species under most treatments, suggesting that Mn deficiency was stunting shrub growth on both soil types.

Full access

Timothy K. Broschat

Broadleaf ornamental trees are known to vary widely in their responses to fertilization, depending on the species and soil and other environmental factors. Thus, it is important to study the responses of a wide range of tree species to fertilization, especially on nutrient-poor soils. Four species of temperate to tropical trees, live oak (Quercus virginiana), west indian mahogany (Swietenia mahagoni), black olive (Bucida buceras ‘Shady Lady’), and beautyleaf (Calophyllum brasiliense), planted into a sandy native soil in south Florida were fertilized with a 24N–0P–9.3K turf fertilizer or an 8N–0P–10K–4Mg plus micronutrients palm fertilizer at rates of 10 or 20 g of nitrogen per tree four times per year. Tree height, width, caliper, and nutrient deficiency rating scores for nitrogen, potassium, and magnesium were determined at 1 year after planting (establishment period) and at 3 years after planting (maintenance phase). Data from these measured variables were subjected to principal component analysis to obtain a single measure of overall quality, namely, the scores for each tree on the first principal component. West Indian mahogany showed no response to fertilization during or following establishment. Either fertilizer type or rate improved live oak, black olive, and beautyleaf quality over that of unfertilized controls during both establishment and maintenance phases, but the high rate of the palm fertilizer was superior to either rate of the turf fertilizer for beautyleaf both during establishment and afterward. Leaf nutrient concentrations generally were poorly correlated with overall tree quality, but manganese concentrations differed significantly among treatments for all four species. Based on these results, fertilization of West Indian mahogany is not recommended, but live oak, black olive, and beautyleaf will benefit from fertilizer applied at the time of planting and after establishment.

Free access

Timothy K. Broschat

All leaves from 10 replicate Cocos nucifera L. `Malayan Dwarf' (COC) and Phoenix canariensis Chabaud (CID) trees were sampled for leaf nutrient analysis. In addition, the leaflets of the youngest fully expanded leaves and the third oldest leaves were divided into five groups along the primary leaf axis and these leaflets were then cut into thirds to determine nutrient distribution patterns within leaves and leaflets. Nutrient remobilization rates were calculated for N, P, K, Mg, and Mn. Results showed that N, P, and K were highly mobile within and between leaves of both species of palms. Up to 31% of the N, 66% of the K, and 37% of the total P in the oldest leaves were ultimately remobilized to newer leaves within the palm. Magnesium remobilization rates averaged ≈71% for CID but only ≈10% for COC. The middle-aged leaves appeared to be the primary sink for Mg in COC, rather than the youngest leaves as in CID. Manganese was also quite mobile in both species, with up to 44% of the total Mn remobilized in CID. Samples consisting of recently matured leaves were determined to be the most appropriate for Ca, Fe, Mg (COC only), and Zn, but oldest leaves are more suitable for N, P, K, and Mn analysis.

Full access

Timothy K. Broschat

Container-grown Bougainvillea Comm. Ex Juss. `Brasiliensis' were fertilized with ammonium sulfate, sodium nitrate, or ammonium sulfate plus sodium nitrate as N sources. Plants fertilized with sodium nitrate were stunted, extremely chlorotic, and produced few flowers compared to those receiving ammonium sulfate. In a second experiment bougainvilleas were fertilized with 12 different controlled-release or soluble ammonium, urea, or nitrate fertilizers as N sources. Plants grown with only nitrate N were chlorotic, stunted, and produced fewer flowers compared to those receiving N from urea or ammonium salts. High substrate pH, associated with nitrate fertilization, was believed to be a cause of the chlorosis, but possible toxicity symptoms (small necrotic lesions and premature leafdrop) were also observed on nitrate-treated plants. Plants receiving controlled-release urea or potassium nitrate were of higher quality than those receiving similar uncoated fertilizers.

Full access

Timothy K. Broschat

Germination rate was significantly improved by removing the thick, hard endocarp from Butia capitata (pindo palm) fruit. Time to 50% of final germination rate was not affected by endocarp removal. Afterripening storage did not improve germination rate or time. Germination at 104 °F (40 °C) was superior to that at 93 °F (34 °C).

Full access

Timothy K. Broschat

Release rates for 13 commercially available soluble and controlled-release K fertilizers were determined in sand columns at 21C. Potassium chloride, KMgSO4, and K2CO3 were leached completely from the columns within 3 or 4 weeks. Osmocote 0N-0P-38.3K, Multicote 9N-0P-26.7K, the two S-coated K2SO4 products, and Nutricote 2N-0P-30.8K Ty 180 all had similar release curves, with fairly rapid release during the first 20 to 24 weeks, slower release for the next 10 to 12 weeks, and virtually no K release thereafter.