Search Results

You are looking at 21 - 24 of 24 items for

  • Author or Editor: Fred T. Davies Jr x
  • User-accessible content x
Clear All Modify Search
Free access

Andrew D. Cartmill, Fred T. Davies Jr., Alejandro Alarcon, and Luis A. Valdez-Aguilar

Sustainable horticultural production will increasingly have to rely on economically feasible and environmentally sound solutions to problems associated with high levels of bicarbonate (HCO - 3) and associated high pH in irrigation water. The ability of arbuscular mycorrhizal fungi (AMF; GlomusZAC-19) to enhance plant tolerance to HCO3 - was tested on the growth, physiology and nutrient uptake of Rosamultiflora Thunb. ex J. Murr. cv. Burr (rose). Arbuscular mycorrhizal colonized and noninoculated (non-AMF) plants were treated with 0, 2.5, 5, and 10 mm HCO - 3. Increasing HCO - 3 concentration and associated high pH and electrical conductivity (EC) reduced plant growth, leaf elemental uptake and acid phosphatase activity (ACP), while increasing alkaline phosphatase activity (ALP). Inoculation with AMF enhanced plant tolerance to HCO - 3 as indicated by greater plant growth, leaf elemental uptake (N, P, K, Ca, Fe, Zn, Al, Bo), leaf chlorophyll content, higher mycorrhizal inoculation effect (MIE), lower root iron reductase activity, and generally lower wall-bound ACP (at 2.5 mm HCO3 -), and higher soluble ALP (at 10 mm HCO3 -). While AMF colonization (arbuscules, vesicles, and hyphae formation) was reduced by increasing HCO - 3 concentration, colonization still occurred at high HCO - 3. At 2.5 mm HCO3 -, AMF plant growth was comparable to plants at 0 mm HCO3 -, further indicating the beneficial effect of AMF for alleviation of HCO3 - stress.

Free access

Fred T. Davies Jr., Chunajiu He, Amanda Chau, Kevin M. Heinz, and Andrew D. Cartmill

This research details the influence of fertility on plant growth, photosynthesis, ethylene evolution and herbivore abundance of chrysanthemum (Dendranthema grandiflora Tzvelev `Charm') inoculated with cotton aphids (Aphis gossypii Glover). We tested five fertility levels that consisted of 0%, 5%, 10%, 20%, and 100% (375 ppm N) of recommended nitrogen levels. Aphid abundance was greatest at high fertility. Fertility affected the vertical distribution of aphids. A higher population of aphids were observed in physiologically mature and older leaves at low fertility, whereas at high fertility young leaves had 33% more aphids than older, basal leaves. Aphids depressed plant vegetative and reproductive growth, and altered carbohydrate partitioning at high fertility. Aphid-inoculated (AI) plants at high fertility had increased specific leaf area [(SLA), i.e., thinner leaves] and greater leaf area than aphid-free (NonAI) plants. Aphids caused greater ethylene production in reproductive buds and young leaves of high fertility plants, but had no effect on ethylene evolution in physiologically mature or older, basal leaves. Plant growth, leaf nitrogen (N), phosphorus (P), iron (Fe) and manganese (Mn) increased at higher fertility, as did chlorophyll and photosynthetic rates. Leaf N was highest in young and physiologically mature leaves compared to basal leaves. Aphids decreased leaf N and P. Aphids reduced photosynthesis in young leaves of high fertility plants, whereas physiologically mature and older leaves were unaffected.

Free access

James D. Spiers, Fred T. Davies Jr., Chuanjiu He, Carlos E. Bográn, Kevin M. Heinz, Terri W. Starman, and Amanda Chau

This study evaluated the influence of insecticides on gas exchange, chlorophyll content, vegetative and floral development, and plant quality of gerbera (Gerbera jamesonii Bolus `Festival Salmon'). Insecticides from five chemical classes were applied weekly at 1× or 4× their respective recommended concentration. The insecticides used were abamectin (Avid), acephate (Orthene), bifenthrin (Talstar), clarified hydrophobic extract of neem oil (Triact), and spinosad (Conserve). Photosynthesis and stomatal conductance were reduced in plants treated with neem oil. Plants treated with neem oil flowered later—and at 4× the recommended label concentration had reduced growth, based on lower vegetative dry mass (DM) and total aboveground DM, reduced leaf area, thicker leaves (lower specific leaf area), higher chlorophyll content (basal leaves), and reduced flower production. Plants treated with acephate at 4× the recommended label concentration were of the lowest quality due to extensive phytotoxicity (leaf chlorosis). Plants treated with 1× or 4× abamectin or spinosad were of the highest quality due to no phytotoxicity and no thrips damage (thrips naturally migrated into the greenhouse). The control plants and plants treated with 1× bifenthrin had reduced quality because of thrips feeding damage; however gas exchange was not negatively affected.

Full access

Carlos A. Lazcano, Fred T. Davies Jr., Andrés A. Estrada-Luna, Sharon A. Duray, and Victor Olalde-Portugal

Mature cladodes of prickly-pear cactus (Opuntia amyclaea Tenore. `Reina') were treated with five wounding methods and four concentrations of potassium salt indole-3-butyric acid (K-IBA) to stimulate adventitious root formation. The wounding method and K-IBA had highly significant effects on root number and root dry mass of cladodes. Interaction between K-IBA and wounding methods showed that greater root number was obtained at the higher auxin concentrations and with wounding methods that had the greatest cut surface area. K-IBA concentrations from 4,144 to 41,442 μm (1,000 to 10,000 mg·L-1) increased root dry mass. Only the wounding method affected rotting of cladodes. Treatments allowing suberization had a higher percentage of nonrotted cladodes. This research validates the commercial practice of allowing cladodes to suberize early in the propagation cycle. K-IBA altered rooting polarity and stimulated adventitious root formation along the wounded cladode surfaces. The vertical nonsuberized wounding methods and auxin treatments are an excellent classroom demonstration for manipulating rooting polarity. Auxin application and wounding could be of commercial benefit for enhanced rooting in the clonal regeneration of new selections for prickly-pear cactus orchards.