Search Results

You are looking at 11 - 20 of 56 items for

  • Author or Editor: Timothy K. Broschat x
  • User-accessible content x
Clear All Modify Search
Free access

Timothy K. Broschat

Potassium (K) deficiency is a widespread problem in palms growing in sandy or calcareous soils in southeastern United States. Its symptoms are highly conspicuous, reduce palm aesthetic appeal, are difficult to correct, and can be exacerbated by nitrogen (N) fertilization. The objective of this study was to determine the optimum fertilization rates and ratio for N and K in areca palm [Dypsis lutescens (H. Wendl.) Beentje & J. Dransf. and Mexican fan palm (Washingtonia robusta H. Wendl.) growing in a calcareous sandy fill soil. Both species had their highest quality when fertilized with 12.2 g·m−2 N and 12.2 g·m−2 K from controlled-release (2–3 month release) sources every 3 months. Actual N and K application rates were better predictors of palm quality than N:K ratio at the highest fertilization rates that would be recommended for field nursery production. However, at lower application rates more typical of those used for landscape palm maintenance, palm quality improved as the N:K application ratio was decreased.

Free access

Timothy K. Broschat

Palms are an increasingly important element in landscapes in the subtropical and warm temperate regions of the United States. Unfortunately, palms have very high nutritional requirements and rarely can be found without at least one nutrient deficiency, especially on the sandy and calcareous soils of the southeastern United States. These deficiencies are conspicuous and unsightly, reduce canopy size and vigor, and can become fatal. Current maintenance fertilizer recommendations for landscape palms in Florida growing in these soils entail four applications per year of an 8N–0.9P–10K–4Mg plus micronutrients palm fertilizer. However, because phosphorus (P) and nitrogen (N) are considered pollutants of ground and inland and coastal surface waters, it is important to apply only as much of these elements as necessary for palm health. This study showed that areca palms (Dypsis lutescens) can be grown in a native sand soil or in a calcareous fill soil without supplemental P and with no N applied during the rainy summer months of June through September when application of these elements may be legally restricted. It also demonstrated that the negative effects caused by high N:potassium (K) ratio turf fertilizers can be mitigated by adding a controlled release palm fertilizer that contains no N or P. Because of strong dilution effects in this study, leaf nutrient concentrations were found to be poor indicators of palm quality and nutritional status.

Full access

Timothy K. Broschat

The relative release rates of boron (B) from nine soluble and controlled-release B fertilizer sources were determined in sand leaching columns at 21 °C. Solubor was almost completely leached from the sand within 5 weeks. Boric oxide released the majority of its B within 7 weeks, whereas Dehybor provided B for up to 13 weeks. Granubor release rates were linear through ≈12 weeks. The five products containing calcium or sodium calcium borates released B much more slowly, with probertite and ulexite being the most rapid followed by B32 G, colemanite, and B38 G. B38 G released only ≈40% of its B content during the 104-week leaching study. The rapid release and high B concentrations associated with Solubor suggest a greater potential for phytotoxicity with this source than other slower-release sources.

Full access

Timothy K. Broschat

Chinese hibiscus (Hibiscus rosa-chinensis), shooting star (Pseuderanthemum laxiflorum), downy jasmine (Jasminum multiflorum), areca palm (Dypsis lutescens), and `Jetty' spathiphyllum (Spathiphyllum) were grown in containers using Osmocote Plus 15-9-12 (15N-3.9P-10K), which provided phosphorus (two experiments), or resin-coated urea plus sulfur-coated potassium sulfate, which provided no phosphorus (one experiment). Plants were treated with water drenches (controls), drenches with metalaxyl fungicide only, drenches with phosphoric acid (PO4-P), drenches with metalaxyl plus phosphorus from phosphoric acid, drenches with PhytoFos 4-28-10 [4N-12.2P-8.3K, a fertilizer containing phosphorous acid (PO3-P), a known fungicidal compound], or a foliar spray with PhytoFos 4-28-10. Plants receiving soil drenches with equivalent amounts of P from PhytoFos 4-28-10, PO4-P, or PO4-P+metalaxyl generally had the greatest shoot and root dry weights and foliar PO4-P concentrations. There were no differences between the control and metalaxyl-treated plants, indicating that root rot diseases were not a factor. Therefore, responses from PhytoFos 4-28-10 were believed to be due to its nutrient content, rather than its fungicidal properties. Foliar-applied PhytoFos 4-29-10 produced plants that were generally similar in size to control plants or those receiving metalaxyl only drenches. Fertilizers containing PO3-P appear to be about as effective as PO4-P sources when applied to the soil, but are relatively ineffective as a P source when applied as a foliar spray. A distinct positive synergistic response for shoot and root dry weights and foliar PO4-P concentrations was observed for the PO4-P+metalaxyl treatment when no P was applied except as a treatment.

Full access

Timothy K. Broschat

In two experiments, pasteurized poultry litter (PPL) was evaluated as a potential substitute for controlled-release fertilizers in the production of container-grown downy jasmine (Jasminum multiflorum), chinese hibiscus (Hibiscus rosa-sinensis), and areca palm (Dypsis lutescens). Downy jasmine and chinese hibiscus generally grew better when provided with PPL as a micronutrient source than with no micronutrients or with an inorganic micronutrient blend (MN). However, areca palm grew poorly with PPL as a fertilizer supplement compared with MN-fertilized areca palm. PPL provided high levels of ammonium nitrogen, phosphorus, and potassium during the first few weeks, but soil solution levels of these elements dropped off rapidly in subsequent weeks. The large amount of phosphorus leached from the containers fertilized with PPL is an environmental concern.

Full access

Timothy K. Broschat

Palms (Arecaceae) growing in containers have similar nutritional requirements as other tropical ornamental plants and grow well with fertilizers having an elemental ratio of 3N:0.4P:1.7K. However, palms growing in the landscape or field nurseries have very different nutritional requirements from dicotyledonous plants. Whereas nitrogen (N) is the primary limiting nutrient element in container production, potassium (K), manganese (Mn), magnesium (Mg), boron (B), and iron (Fe) deficiencies are more widespread than N deficiency in most landscape soils. Because palms have a single apical meristem, deficiencies of K, Mn, or B can be fatal. In addition to insufficient nutrients in the soil, palm nutrient deficiencies can be caused by high soil pH, certain types of organic matter, deep planting, poor soil aeration, cold soil temperatures, and nutrient imbalances. Correction of nutritional deficiencies in palms can take up to 2 years or longer and therefore prevention of deficiencies by proper fertilization is important. Research has shown that high N:K ratio fertilizers applied directly, or indirectly via application to adjacent turfgrass in a landscape, can exacerbate K and Mg deficiencies in palms, sometimes fatally. For sandy Atlantic coastal plain soils in the southeastern United States, an analysis of 8N–0.9P–10K–4Mg plus micronutrients has been recommended.

Full access

Timothy K. Broschat

Four different organic mulches were applied to 1-m2 plots of Margate fine sand soil that were irrigated three times per week. A 8N–0.9P–10K–4Mg controlled-release fertilizer was applied above or below these mulches to determine the effects of fertilizer placement on weed growth and soil pH, nitrate–nitrogen, ammonium–nitrogen, potassium (K), and magnesium (Mg) concentrations. Unfertilized plots were used to determine mulch effects on soil pH and nutrient content. Fertilizer placement generally had no effect on any of these soil fertility parameters nor did it affect weed numbers. Cypress mulch increased soil K concentrations, and pine bark and eucalyptus mulch increased soil Mg over that of unmulched plots when no fertilizer was applied. The presence of any mulch type greatly reduced weed numbers over that of unmulched plots.

Full access

Timothy K. Broschat

Five-gram (0.18 oz) samples of two controlled-release fertilizers (CRFs), Osmocote 15N–3.9P–10K (8–9 month) (OSM) and Nutricote 18N–2.6P–6.7K (type 180) (NUTR), were sealed into polypropylene mesh packets that were placed on the surface of a 5 pine bark: 4 sedge peat: 1 sand (by volume) potting substrate (PS), buried 10 cm (3.9 inches) deep below the surface of PS, buried 10 cm below the surface of saturated silica sand (SS), or in a container of deionized water only. Containers with PS received 120 mL (4.1 floz) of deionized water three times per week, but the containers with SS or water only had no drainage and were sealed to prevent evaporation. Samples were removed after 2, 5, or 7 months of incubation at 23 °C (73.4 °F) and fertilizer prills were crushed, extracted with water, and analyzed for ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), phosphorus (P), and potassium (K). Release rates of NO3-N were slightly faster than those of NH4-N and both N ions were released from both products much more rapidly than P or K. After 7 months, OSM prills retained only 8% of their NO3-N, 11% of their NH4-N, 25% of their K, and 46% of their P when averaged across all treatments. Nutricote prills retained 21% of their NO3-N, 28% of their NH4-N, 51% of their K, and 65% of their P. Release of all nutrients from both fertilizers was slowest when applied to the surface of PS, while both products released most rapidly in water only. Release rates in water only exceeded those in SS, presumably due to lower rates of mass flow in SS.

Free access

Timothy K. Broschat

Spathiphyllum Schott. 'Mauna Loa Supreme' grown for 6 months in a fine sand soil or a 5 pine bark: 4 sedge peat: 1 sand medium (by volume) were fertilized with 7.6g N, 1.4g P, and 4.5g K/3.5-liter container by 4 different methods. The same raw fertilizer prills (21N-3P-12K) were applied weekly as a liquid, monthly as soluble granules, bimonthly as a lightly resin-coated fertilizer (Osmocote), or every 6 months as a heavily resin-coated fertilizer. All leachates were collected and were measured and analyzed weekly for N O3, PO4, and K. Spathiphyllum grew best in the sand soil with either of the controlled release formula- tions, but fertilization method had no effect on growth in the potting medium. Nitrate and K leaching losses from the potting medium were lowest from the controlled release fertilizers and highest from the soluble granules. Liquid fertilization resulted in the highest amounts of PO4 lost to leaching and controlled release fertilizers the least. In the fine sand soil, NO3 leaching was equivalent from all methods. Soluble granules had the highest levels of leached K and PO4 and the lightly-coated fertilizer lost the least due to leaching.

Free access

Timothy K. Broschat

Spathiphyllum Schott. `Mauna Loa Supreme' and areca palm (Chrysalidocarpus lutescens H. Wendl.) were grown for 6 months in 3.5-liter containers using a pine bark–sedge peat–sand container medium or a native sand soil. Plants were fertilized with equivalent amounts of a 21N–3P–12K fertilizer applied weekly as a liquid, monthly as a soluble granular, bimonthly as a lightly coated controlled-release, or every 6 months as a heavily coated controlled-release fertilizer. All leachates were collected and analyzed weekly for NO3-N, PO4-P, and K. Amounts of all three nutrients leached per week varied considerably in response to fertilizer reapplications or high rainfall. Nitrate leaching generally decreased over time, PO4-P leaching increased, and K remained relatively constant. Shoot dry weights of spathiphyllum were equivalent for all fertilization methods, but areca palm shoot dry weights were highest with liquid fertilization and lowest with the soluble granular fertilizer. Nutrient leaching for all three ions was highest for the soluble granules and lowest for the two controlled-release formulations.