Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: John C. Snyder x
  • Refine by Access: User-accessible Content x
Clear All Modify Search
Full access

Brent Rowell, R. Terry Jones, William Nesmith, April Satanek, and John C. Snyder

Bacterial spot epidemics, caused by Xanthomonas campestris pv. vesicatoria (Xcv), are still considered serious risks for commercial pepper (Capsicum annuum) growers in a number of eastern, southern and midwestern states. Newly released bell pepper cultivars with the Bs2 gene for resistance to Xcv races 1, 2, and 3 were compared in 2000 under bacterial spot-free and severe (natural) bacterial spot epidemic conditions in central and eastern Kentucky where similar trials had been conducted from 1995 to 1997. In addition to the replicated bell pepper trials, 49 hot and specialty pepper cultivars were grown for observation in single plots at the same two locations. As in previous trials, there were economically important differences in resistance and marketable yields among bell pepper cultivars having the Bs2 gene; some resistant cultivars were as susceptible as susceptible checks. Others were highly resistant in spite of the presence of Xcv races 3 and 6 in the eastern Kentucky trial. Only a few were highly resistant with excellent fruit quality. With a few notable exceptions, most of the hot and specialty cultivars were very susceptible to bacterial spot. Two of the three new jalapeño cultivars carrying Bs2 were highly resistant to bacterial spot and high yielding under severe epidemic conditions.

Full access

Derek M. Law, A. Brent Rowell, John C. Snyder, and Mark A. Williams

A 2-year field study in Lexington, Ky., evaluated weed control efficacy and influence on yields of several organic mulches in two organically managed bell pepper (Capsicum annuum) production systems. Five weed control treatments [straw, compost, wood chips, undersown white dutch clover (Trifolium repens) “living mulch,” and the organically approved herbicide corn gluten] were applied to two production systems consisting of peppers planted in double rows in either flat, bare ground or on black polyethylene-covered raised beds. In the first year, treatments were applied at transplanting and no treatment was found to provide acceptable season-long weed control. As a result, bell pepper yields in both production systems were very low due to extensive weed competition. First year failures in weed control required a modification of the experimental protocol in the second year such that treatment application was delayed for 6 weeks, during which time three shallow cultivations were used to reduce early weed pressure and extend the control provided by the mulches. This approach increased the average weed control rating provided by the mulches from 45% in 2003 to 86% in 2004, and resulted in greatly improved yields. In both years, polyethylene-covered raised beds produced higher yields than the flat, bare ground system (8310 lb/acre compared to 1012 lb/acre in 2003 and 42,900 lb/acre compared to 29,700 lb/acre in 2004). In the second year, the polyethylene-covered bed system coupled with mulching in-between beds with compost or wood chips provided excellent weed control and yields. When using the wood chip mulch, which was obtained at no cost, net returns were $5587/acre, which is similar to typical returns for conventionally grown peppers in Kentucky. Net returns were substantially decreased when using compost due to the purchase cost. Results from this study indicate that shallow cultivation following transplanting, combined with midseason mulch application, resulted in high yields in an organically managed bell pepper system that were comparable to yields of most varieties grown conventionally in a variety trial conducted on the same farm.

Free access

Kim S. Lewers, Patricia R. Castro, John M. Enns, Stan C. Hokanson, Gene J. Galletta, David T. Handley, Andrew R. Jamieson, Michael J. Newell, Jayesh B. Samtani, Roy D. Flanagan, Barbara J. Smith, John C. Snyder, John G. Strang, Shawn R. Wright, and Courtney A. Weber