Search Results

You are looking at 1 - 10 of 75 items for :

  • underground parts x
  • User-accessible content x
Clear All
Open access

Satoru Motoki, Tianli Tang, Takumi Taguchi, Ayaka Kato, Hiromi Ikeura, and Tomoo Maeda

, respectively. In addition to the underground parts of asparagus, these specific aboveground parts also may be effectively used as resources of protodioscin. The results of this study suggest that nonusable parts of asparagus can be resources of useful

Free access

Junyang Song

methods and limited recognition of the root system. Domestic and international studies of the underground parts of lilies mainly focused on the influence of different factors such as planting depth, flurprimidol treatment ( Whipker et al., 2011

Free access

Chenq-chu Nee

The purpose of this invention is to preserve the germplasm which are compatibly graftable for each other in the specific environment. The preserved [interstock] is protected by the rootstock which is used to the stresses from underground, and the “topstock” which is tolerant to the stresses from aboveground.

The compound plant (Top-interstock-rootstock) is different from the traditional combinations which the interstock impove the impatibility between scion and rootstock. The interstock in this design must be compatible with its top and rootstock parts and keep “paradormancy” in the germplasm repository.

Preservation of pear species & cultivars will be presented to describe the details of the techinque.

Free access

David Graper and Will Healy

Non flowering Alstroemeria `Regina' plants were divided into aerial components: stems and apical and basal leaves or underground components: rhizome, storage roots, stele and fibrous roots. Samples were collected from distal and proximal ends of the rhizome to allow comparisons between structures of different ages. Ethanol soluble sugars were extracted and measured using HPLC. Starch was degraded to glucose using amyloglucosidase and measured.

There were no age differences in the starch, total soluble sugar (TSUGAR) or total soluble carbohydrates (TCHO) in the rhizome or aerial portions of the plant. There was a preferential partitioning of starch, sucrose, TSUGAR and TCHO to underground plant parts. The storage roots were the primary sink for the stored carbohydrates. Stems contained large concentration of glucose while fructose was found in storage roots and old stems. Sucrose was found primarily in old steles and storage roots. Starch was partitioned almost exclusively into the storage roots with no difference due to age of the storage root. Up to 42% of the TCHO in the old storage roots was composed of a carbohydrate which co-chromatogramed with melezitose using HPLC.

Free access

Wol-Soo Kim

Energized water production: Underground water, which was not con-taminated with heavy metal ions, chemicals, and much nitrate, etc. => 1) filtering through reversed osmosis pressure filter, 2) nano-sized mineral system with specific stone powder, 3) far red light expositing system, 4) magnetic field treatment, 5) oxygen supply system => energized water (EW). Physical and chemical properties: EW showed higher pH level, electrical conductivity (EC), energy levels by Killian camera and oxygen concentration; however, lower ORP, cluster size as much as 79 Hz by NMR in comparison to underground water, as control. Bioassay of sprouting vegetable plants: In barley germination test, EW showed higher germination rate, strong top/root growth, especially outstanding differentiation of roots in comparison to control. After 2 weeks, the control barley seedlings showed significant symptoms of senescence in root tissue. Also, bean sprouts greatly increased growth in epicotyls and hypocotyls, and development under EW conditions. The roots of control plants showed discolored and mal flavors and gradually decayed in room temperature. With EW supply, vegetable seeds and sprouting plants showed better growth and development of top and root parts. In conclusion, EW influenced the plants to have higher biodynamic potentials for seed germination and growth and development of new plant tissues.

Free access

W. Michael Sullivan, Zhongchun Jiang, Richard J. Hull, and Carl D. Sawyer

Intraspecific variation in nitrate absorption by turfgrasses has been studied, but differences in turfgrass root morphology, which may contribute to observed variation, have not been ascertained. This information may benefit breeding programs aimed at improving the ability of turfgrasses to absorb nitrate from low fertility soils. This study quantified root morphological traits of Kentucky bluegrass (Poa pratensis L.) cultivars and their nitrate uptake rates (NUR). Tiller-generated plants were grown in silica sand, mowed weekly, and watered daily with half-strength modified Hoagland's nutrient solution containing 1 mM nitrate. When 5 months old, plants were excavated, and roots washed to remove sand. The plants were then transferred to 120-mL black bottles. After nitrate depletion of the nutrient solution was monitored for 8 consecutive days, the underground portion of each plant was separated into three parts: 1) adventitious roots, 2) fibrous roots, and 3) rhizomes. Measurements of total root length, total surface area, and average diameter were made by a scanning and image analysis system. NURs were calculated from nitrate depletion data and expressed as micromoles per plant per hour. Correlation analyses were performed on these morphological traits and NUR by the Minitab program. NUR was significantly and positively correlated with the total biomass, length, and area of the three underground parts. This was attributable mainly to fibrous roots as indicated by significant and positive correlations between NUR and the total biomass, length, area, and average diameter of fibrous roots. NUR was also positively correlated with the total biomass, length, and area of adventitious roots but negatively correlated with total biomass, area, and average diameter of rhizomes.

Free access

Dariusz Swietlik

The public is increasingly concerned with the danger of ground water pollution with fertilizer nitrogen and other chemicals. This is because slow water movement in underground aquifers assures the long lasting existence of contaminants. Citrus orchards commonly are heavily fertilized with nitrogen and other mineral nutrients. Fertigation through a low volume irrigation system is a promising new method of efficient use of fertilizer materials because it places mineral nutrients only in the wetted zones where roots are most active. Preliminary studies in Texas indicate that applying nitrogen fertilizers through a low volume irrigation system is a potentially powerful tool in minimizing N fertilizer leaching. When coupled with partial sodding in close tree proximity further reductions in NO3 leaching may be achieved presumably through uptake into the cover plants and/or indirectly by enhancing biological fixation in the soil. Other potential benefits of frequent N fertigations in citrus orchards will also be discussed based on the experimental data collected in various parts of the world.

Free access

Amalia Barzilay, Hanita Zemah, Rina Kamenetsky, and Itzhak Ran

The life cycle and morphogenesis of the floral shoot of Paeonia lactiflora Pallas cv. Sarah Bernhardt were studied under Israeli conditions. The renewal buds for the following year originate on the underground crown, at the base of the annual stems. Bud emergence begins in early spring. Stems elongate rapidly and reach heights of 50-70 cm in 60-70 days. Flowering begins in April and continues until the end of May. After flowering, the leafy stems remain green until September-October, when the leaves senesce, and the peony plant enters the “rest” stage for 3-4 months. The new monocarpic shoot initiated in the renewal bud at the end of June with the formation of the first leaf primordia and continued to increase in size until February. During summer, the renewal buds remain vegetative. The apical meristem ceases leaf formation after senescence of the aboveground shoots in the fall. During September, the apical meristem of the renewal buds reaches the generative stage and achieves the form of a dome, but remains undifferentiated. In October, floral parts become visible. Floral differentiation is terminated at the beginning of December. Floral initiation and differentiation of peony do not require low temperatures. Morphological development and florogenesis were similar to other geophyte species with an annual thermoperiodic life cycle.

Free access

Manasikan Thammawong, Daisuke Nei, Poritosh Roy, Nobutaka Nakamura, Takeo Shiina, Yuuichi Inoue, Hidenobu Hamachi, and Shigeyuki Nonaka

individual sugar contents of bamboo shoots harvested from different maturities (emerged and underground position) were determined. This work also investigates the effects of storage conditions on the changing characteristics of cellular sugar components in

Full access

Masahiko Fumuro

before the dissecting survey. Fig. 3. Nine-year-old ( A – C ) own-rooted and ( D – F ) grafted mango cv. Aikou trees cultivated in pots. ( A , D ) Whole view of own-rooted and grafted trees. ( B , E ) State of the underground parts of the own-rooted and