Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Valdomiro A.B. de Souza x
  • Refine by Access: User-accessible Content x
Clear All Modify Search
Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Heritability estimates are useful to predict genetic progress among offspring when the parents are selected on their performance, but they also provide information about major changes in the amount and nature of genetic variability through generations. Genetic and phenotypic correlations, on the other hand, are useful for better planning of selection programs. In this research, seedlings of 39 families resulting from crosses among 27 peach [Prunus persica (L.) Batsch] cultivars and selections were evaluated for date of full bloom (DFB), date of ripening (DR), fruit period development (FDP), flower density (FD), node density (ND), fruit density (FRD), fruit weight (WT), soluble solids content (SS), apical protuberance (TIP), red skin color (BLUSH), and shape (SH) in 1993 and 1994. The data were analyzed using the mixed linear model. The best linear unbiased prediction (BLUP) was used to estimate fixed effects and predict breeding values (BV). Restricted maximum likelihood (REML) was used to estimate variance components, and a multiple-trait model to estimate genetic and phenotypic covariances between traits. The data indicates high heritability for DFB, DR, FDP, and BLUSH, intermediate heritability for WT, TIP, and SH, and low heritability for FD, ND, FRD, and SS. They also indicate year effect as a major environmental component affecting seedling performance. High correlation estimates were found between some traits, but further analysis is needed to determine their significance.

Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Breeding values (BVs) for four plant (bloom date, fruit development period, fruit density, and blind node propensity) and five fruit (weight, blush, shape, soluble solids, and titratable acidity) traits of 28 peach [Prunus persica (L.) Batsch (Peach Group)] genotypes used as parents in the Texas A&M University peach breeding program were predicted using best linear unbiased prediction (BLUP). Data from seedlings of 108 families developed from 42 peach parents were analyzed by using a mixed linear model, with years treated as fixed and additive genotypes as random factors. The precision of the predictions was high for most parental genotypes, as indicated by the correlations (rTI) between predicted and true BVs and the standard error of the predictions (SEP). In most cases, the higher the number of progeny, the better the agreement between predicted and true BVs for that parent. Parents with observations from more than 30 seedlings had a rTI ≥ 0.90 and smaller SEPs. For all traits analyzed, the lowest precision (low rTI and high SEP) was observed for `Flordaking', whose predicted BVs was based only on pedigree information.

Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Seedlings of 108 families from crosses among 42 peach [Prunus persica (L.) Batsch] cultivars and selections were evaluated for six plant characteristics in 1993, 1994, and 1995. The data were analyzed by using a mixed linear model, with years treated as fixed and additive genotypes as random factors. Best linear unbiased prediction (BLUP) was used to estimate fixed effects. Restricted maximum likelihood (REML) was used to estimate variance components, and a multiple trait model was used to estimate genetic and phenotypic covariances among traits. The narrow-sense heritability estimates were 0.41, 0.29, 0.48, 0.47, 0.43, and 0.23 for flower density, flowers per node, node density, fruit density, fruit set, and blind node propensity, respectively. Most genetic correlations among pairs of traits were ≥0.30 and were, in general, much higher than the corresponding phenotypic correlations. Flower density and flowers per node (ra = 0.95), fruit density and fruit set (ra = 0.84) and flower density and fruit density (ra = 0.71) were the combinations of traits that had the highest genetic correlation estimates. Direct selection practiced solely for flower density (either direction) is expected to have a greater effect on fruit density than direct selection for fruit density.

Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Thirteen peach [Prunus persica (L.) Batsch] fruit characteristics were investigated for 3 years, 1993, 1994, and 1995, in College Station, Texas, to determine heritability, genetic and phenotypic correlations, and predicted response to selection. Seedlings of 108 families resulting from crosses among 42 peach cultivars and selections were used in the evaluations. A mixed linear model, with years treated as fixed and additive genotypes as random factors, was employed to analyze the data. Best linear unbiased prediction (BLUP) was used to estimate fixed effects. Restricted maximum likelihood (REML) was used to estimate variance components, and a multiple trait model was used to estimate genetic and phenotypic covariances between traits. Genetic and phenotypic correlations ≥0.65 and <0.30 were considered strong or very strong and weak, respectively. Date of ripening, fruit development period (FDP) and date of full bloom had the highest heritability (h2) estimates, 0.94, 0.91, and 0.78, respectively. Fruit cheek diameter and titratable acidity (h2 = 0.31) were the traits with the lowest estimates. Fruit development period, fruit blush, and date of ripening had the highest predicted selection responses, whereas fruit suture, fruit cheek, L/W12 (ratio fruit length to average fruit diameters), and fruit tip had the lowest values. Most genetic correlations were ≥0.30 and were, in general, much higher than the corresponding phenotypic correlations. All four measures of fruit size were genetically and phenotypically very strongly correlated. Important genetic correlation estimates were also observed for date of ripening with FDP (ra = 0.93), date of ripening and FDP with fruit blush (ra = -0.77, ra = -0.72), SS (percent soluble solids) (ra = 0.63, ra = 0.62) and TA (ra = 0.55, ra = 0.64), and SS with TA (ra = -0.56). Direct selection practiced solely for early ripening and short FDP is expected to have a greater effect on correlated traits than direct selection for early bloom and large fruit mass.