Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Travis Wayne Shaddox x
  • User-accessible content x
Clear All Modify Search
Open access

Travis Wayne Shaddox and Joseph Bryan Unruh

Wetting agents are commonly applied to golf putting greens to manage soil moisture. Speculation has arisen regarding the influence of wetting agents on golf ball roll distance. The objective of this study was to determine the influence of wetting agents on golf ball roll distance, putting green surface firmness, and volumetric water content in sand-based putting greens. This study was conducted during the 2018 growing season in Jay, FL and Ft. Lauderdale, FL on ‘TifEagle’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) putting greens. Treatments were applied to plots (2 × 3 m) in a randomized complete block design using four replications, and included seven wetting agents and an untreated turfgrass control. The study area was irrigated at 80% of the previous week’s reference evapotranspiration. Ball roll distance, firmness, and volumetric water content (VWC) were recorded weekly and pooled by month. Wetting agents did not lead to an increase in ball roll distance, firmness, or VWC during any month in Jay or Ft. Lauderdale. Inversely, in Jay, polyoxyalkylene polymer resulted in decreased surface firmness during October and November compared with untreated turfgrass. VWC was reduced as a result of some wetting agents in Ft. Lauderdale in February, September, November, and December, and resulted in no influence on VWC in Jay. The coefficients of determination of surface firmness and ball roll distance in Jay and Ft. Lauderdale were significant (P < 0.001) and were 0.12 and 0.08, respectively. This indicates that ball roll distance can increase as surfaces become firmer. However, this study found no evidence that wetting agents increase ball roll distance on sand-based putting greens.

Open access

Travis Wayne Shaddox and Joseph Bryan Unruh

Numerous nitrogen (N) sources are used in turfgrass management and vary from soluble to slow-release. Determining the least expensive N source can be confusing for consumers. Price per ton and price per pound N are common price comparison methods. An improved approach could use longevity of the N source to balance the price. The objective of this study was to determine the longevity of turfgrass response to N sources and to determine the cost to achieve such responses. This study was conducted in Ft. Lauderdale and Jay, FL, from 1 Jan. to 31 Dec. 2018 on ‘Riley’s Super Sport’ (Celebration®) bermudagrass (Cynodon dactylon). Treatments included nontreated turfgrass, urea, ammonium sulfate, stabilized urea, methylene urea, ureaformaldehyde, two natural organics, sulfur-coated urea, and two polymer-coated urea fertilizers. Treatments were arranged in a split-plot design with N sources as whole plots and N rate (N applied at 49 and 98 kg·ha−1 every 4 months) as subplots. Turf quality was recorded on a scale of 1 to 9, where 1 = dead/brown turf and quality, 6 = minimal acceptable, and 9 = optimal healthy/green turf. Turf quality ratings were recorded weekly and used to determine response longevity (days quality ≥6.0) and area under the turfgrass response curve (AUTRC). Urea resulted in response longevity greater than or equal to other N sources during each season except when applied at 98 kg·ha−1 of N during the fall fertilizer cycle in Jay. Natural organics were ≈6-fold more expensive than urea in Jay and Ft. Lauderdale using turfgrass response longevity and AUTRC. Urea and sulfur-coated urea were the least expensive soluble and slow-release N source, respectively, using dollars per pound N, dollars per acre per day, and dollars per acre per quality-day during each fertilizer cycle and annual average in Jay and Ft. Lauderdale. No evidence was found supporting the use of turfgrass response as a more effective method of determining fertilizer cost than dollars per pound N.