Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: L.T. Case x
  • User-accessible content x
Clear All Modify Search
Full access

L.T. Case, H.M. Mathers, and A.F. Senesac

Container production has increased rapidly in many parts of the U.S. over the past 15 years. Container production has been the fastest growing sector in the nursery industry and the growth is expected to continue. Weed growth in container-grown nursery stock is a particularly serious problem, because the nutrients, air, and water available are limited to the volume of the container. The extent of damage caused by weeds is often underestimated and effective control is essential. Various researchers have found that as little as one weed in a small (1 gal) pot affects the growth of a crop. However, even if weeds did not reduce growth, a container plant with weeds is a less marketable product than a weed-free product. Managing weeds in a container nursery involves eliminating weeds and preventing their spread in the nursery, and this usually requires chemical controls. However, chemical controls should never be the only management tools implemented. Maximizing cultural and mechanical controls through proper sanitation and hand weeding are two important means to prevent the spread and regeneration of troublesome weeds. Cultural controls include mulching, irrigation methods (subirrigation), and mix type. Nursery growers estimate that they spend $500 to $4000/acre of containers for manual removal of weeds, depending on weed species being removed. Economic losses due to weed infestations have been estimated at approximately $7000/acre. Reduction of this expense with improved weed control methodologies and understanding weed control would have a significant impact on the industry. Problems associated with herbicide use in container production include proper calibration, herbicide runoff concerns from plastic or gravel (especially when chemicals fall between containers) and the need for multiple applications. As with other crops, off-site movement of pesticides through herbicide leaching, runoff, spray drift, and non-uniformity of application are concerns facing nursery growers. This article reviews some current weed control methods, problems associated with these methods, and possible strategies that could be useful for container nursery growers.

Full access

H.M. Mathers, S.B. Lowe, C. Scagel, D.K. Struve, and L.T. Case

Container production has many advantages over traditional in-ground (field) production, including less damage occurring to the root system when transplanted, better establishment after transplanting, decreased labor and land acquisition costs for production, and increased product availability and longevity in the retail market. Growing plants in containers, however, alters root growth and function and can change root morphology. Numerous factors influence root growth in containers. Roots of container-grown plants are subjected to temperature and moisture extremes not normally found in field production. The effects of substrate aeration (Ea) as well as water holding capacity (Pv) interact with different pot characteristics, resulting in changes to root morphology. Successful plant establishment after transplanting is often linked to root health. This review focuses on the roles of substrate physical and chemical properties, container characteristics, and temperature in altering root growth in container-grown woody nursery crops. Root circling, planting too deeply or “too-deep syndrome” (TDS), and the use of composts as container substrates will also be examined.