Search Results

You are looking at 1 - 10 of 404 items for :

  • "water requirements" x
  • Refine by Access: All x
Clear All
Full access

Brent Rowell and Mar Lar Soe

-to-use yet inexpensive tool to estimate horticultural crop water requirements. This paper describes concepts and design of two different Water Wheel calculators in enough detail that nonspecialists might develop their own calculators using local climatic data

Free access

David R. Bryla and Bernadine C. Strik

( Caruso and Ramsdell, 1995 ; de Silva et al., 1999 ). Typically, 25 to 50 mm of water per week is recommended for blueberry ( Strik et al., 1993 ), although actual water requirements will likely vary not only with the environmental conditions, but also

Free access

David R. Bryla, Jim L. Gartung, and Bernadine C. Strik

computing crop water requirements. FAO Irrigation and Drainage Paper 56 Food and Agriculture Organization of the United Nations Rome, Italy Bryla, D.R. Linderman, R.G. 2007 Implications of irrigation method and amount of water application on Phytophthora

Free access

L.R. Costello, N.P. Matheny, and J.R. Clark

Since it is unlikely that crop coefficients will be established for landscape plantings, a method to estimate landscape water requirements is proposed. By evaluating three factors that significantly influence water use-species planted, vegetation density, and site microclimate-and assigning numerical values to each, an estimate of a landscape crop coefficient (or landscape coefficient, KL) can be calculated. An estimate of evapotranspirational water loss for landscapes is then the product of the landscape coefficient multiplied by the reference evapotranspiration. This paper presents values for the above three factors and discusses the rationale for each. Examples using the landscape coefficient formula are included, as well as a discussion of special considerations relative to its use.

Free access

Susmitha Nambuthiri, Ethan Hagen, Amy Fulcher, and Robert Geneve

Nambuthiri, S. Hagen, E. Fulcher, A. Geneve, R. 2015b Evaluating a physiological-based, on-demand irrigation system for container-grown woody plants with different water requirements HortScience 50 S383 Nemali, K.S. van Iersel, M.W. 2006 An automated system

Full access

C.D. Stanley and B.K. Harbaugh

Methodology was developed to estimate water requirements for production of 20 different potted ornamental plant species with practical application for water conservation in commercial operations. Water requirement prediction equations were generated using pan evaporation to estimate evaporative demand along with plant canopy height and width and flower height as input variables. Coefficients of determination (R2) for the prediction equations among plant species ranged from 0.51 to 0.91, with the lower values mostly associated with plant species with an open or less-uniform growth habit. Variation in water use among different cultivars of marigold also was associated with differences in cultivar growth habit. Estimation of the daily water requirements of potted Reiger begonia and Ficus benjamina using their developed prediction equations was compared to actual water use under common growing conditions to demonstrate the implementation of the method for plant species differing in growth habit.

Free access

Jinmin Fu, Jack Fry, and Bingru Huang

Water requirements for `Meyer' zoysiagrass (Zoysia japonica Steud., hereafter referred to as zoysia), `Midlawn' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy, hereafter referred to as bermuda], `Falcon II' tall fescue (Festuca arundinacea Schreb.) and `Brilliant' kentucky bluegrass (Poa pratensis L., hereafter referred to as bluegrass) were evaluated under a mobile rainout shelter at deficit irrigation levels of 20% to 100% of actual evapotranspiration (ETa), applied twice weekly, between June and September 2001 and 2002. Soil was a river-deposited silt loam (fine, montmorillonitic, mesic Aquic Arquidolls). Minimum annual irrigation amounts required to maintain quality ranged from 244 mm for bermuda to 552 mm for bluegrass. Turfgrass species and respective irrigation levels (% of ETa) at which season-long acceptable turf quality was maintained in each year were bluegrass, 100% (evaluated 2001 only); tall fescue, 60% in 2001 and 80% in 2002; bermuda, 60% in both years; and zoysia, 80% in both years. A landscape manager who could tolerate one week of less-than-acceptable quality could have irrigated tall fescue at 40% ETa (224 mm) in 2001 and 60% ETa (359 mm) in 2002. Likewise, bermuda exhibited unacceptable quality on only one September rating date when irrigated at 40% ETa (163 mm) in 2001. Bermuda was able to tolerate a lower leaf relative water content (LRWC) and higher level of leaf electrolyte leakage (EL) compared to other grasses before quality declined to an unacceptable level.

Free access

D.R. Pittenger, Donald R. Hodel, and David A. Shaw

Non-turf ground-covers occupy a significant portion of the landscape, and understanding their water requirements is important when water conservationism being practiced. Six groundcover species (Baccharis pilularis `Twin Peaks', Drosanthemum hispidum, Vinca major Gazania hybrid, Potentilla tabernaemontani and Hedera helix `Needlepoint') representing a range of observed water needs were evaluated under different levels of irrigation based on percentages of real-time reference evapotranspiration.

Treatments of 100%, 75%, 50% and 25% of ETO were applied during 1989 while treatments of 50%, 40%, 30% and 20% of ETO were applied during 1990. Plant performance ratings in the first year indicated that 50% of ETO was the minimum treatment which resulted in acceptable plan aesthetics for all species except for Drosanthemum which performed equally well at each treatment. Significant differences in performance did occur among and within species at the different treatments. Results from 1990 will reveal which species might maintain aesthetic appearance at irrigation levels between 50% and 20% of ETO. These results will be presented and discussed in terms of their significance to species selection and total landscape irrigation management.

Free access

Thayne Montague* and Lindsey Fox

Recent droughts and depleted water tables across many regions have elevated the necessity to irrigate field-grown (FG) nursery trees. At the same time, ordinances restricting nursery irrigation volume have been implemented, often without regard to plant water requirements. This research investigated growth of seven FG tree species (Acer buergeranum, A. campestre, A. × freemanii `Autumn Blaze', A. truncatum, Quecus muehlenbergii, Q. polymorpha, and Q. robur) subjected to three reference evapotranspiration (ETo) irrigation regimes (100%, 60%, and 30% ETo) in a semi-arid climate. During Spring 2002, nine containerized (11.3 L) trees of each species were field planted in a randomized block design. Each year trees were irrigated through a drip irrigation system. During the first growing season, all trees were irrigated at 100% ETo. Irrigation treatments began Spring 2003. Growth data (shoot elongation and caliper increase) were collected at the end of the 2003 growing season. Species growth data were subjected to analysis of variance. If treatment differences were found, means were separated by Fisher's least significant difference. Shoot growth was influenced by irrigation regime for each species except A. campestre and Q. robur. For each of the five remaining species, the greatest shoot growth increase was generally not associated with the greatest irrigation regime. In a similar manner, caliper increase was influenced by irrigation regime for each species. The 100% ETo irrigation regime produced the greatest caliper increase for A. buergeranum, A. truncatum, Q. polymorpha, and Q. robur. For remaining species, the greatest caliper increase was generally not associated with the greatest irrigation regime.

Free access

David Bryla and Bernadine Strik

Many growers in the Pacific Northwest are planting blueberry fields at higher densities to improve yields and increase the number of berries harvested per acre in the first few years after planting. The objective of this study was to determine the effect of high-density planting on blueberry water requirements. Although close spacing reduces individual plant size, we expected that plants spaced closer together would require more irrigation per unit land area than those spaced further apart due to increased canopy coverage within rows. The study utilized a 5-year-old planting of highbush blueberry, consisting of three cultivars, `Duke', `Bluecrop', and `Elliott', planted at 0.5- and 1.2-m in-row spacings. Plant water use was calculated from changes in soil water content measured using TDR probes for shallow depths and a neutron probe and access tubes for deeper depths. Stem water potentials were also measured periodically using a pressure chamber to determine how well irrigation was meeting crop water demands throughout the season. Surprisingly, plants spaced 0.5 m apart required only slightly more water than those spaced 1.2 m apart. They did, however, require more frequent irrigations due to their smaller root systems, especially during fruit filling. Water use by each cultivar increased during fruit filling and then rapidly decreased after harvest. `Duke' required the most water among cultivars, using 5–10 mm/day from mid-May to mid-August, while `Elliott' required the least, using 3–5 mm/day.