Search Results

You are looking at 1 - 10 of 134 items for :

  • "bitter pit" x
  • Refine by Access: All x
Clear All
Open access

Richard P. Marini, Emily K. Lavely, Tara Auxt Baugher, Robert Crassweller, and James R. Schupp

‘Honeycrisp’ is one of the top five apple cultivars in the United States, but consistent production of high-quality fruit is challenging. One negative characteristic of the cultivar is its susceptibility to bitter pit. The severity of bitter pit

Open access

Richard P. Marini, Tara Auxt Baugher, Megan Muehlbauer, Sherif Sherif, Robert Crassweller, and James R. Schupp

‘Honeycrisp’ is a popular apple cultivar, but it is susceptible to several postharvest disorders, including bitter pit (Al Shoffe et al., 2016; DeEll et al., 2016 ; Watkins et al., 2004 ). Several studies showed that bitter pit development is

Free access

Gerry Neilsen, Denise Neilsen, Shufu Dong, Peter Toivonen, and Frank Peryea

Calcium application trials were undertaken in a 'Braeburn' apple (Malus ×domestica Borkh.) orchard with a history of bitter pit development at harvest. In 2000, an early season calcium chloride application strategy was compared with the unsprayed control and a late season application strategy. From 2001–03, the assessment of timing of calcium chloride sprays was extended by comparing effects of five weekly sprays applied during the growing season either early, middle, or late season. Other Ca application strategies tested included sprays of acidified calcium carbonate suspensions and soil application of calcium thiosulphate. In the first experiment, early application of calcium chloride reduced the occurrence of bitter pit at harvest and after 3 months cold air storage, despite having low harvest fruit Ca concentrations. Late sprayed fruit had a higher incidence of bitter pit. In the second experiment, the later calcium chloride was sprayed in the growing season, the higher the fruit Ca concentration at harvest. Despite this, no bitter pit was measured at harvest for 2 years for early and midseason calcium chloride spray regimes. In 2003, when Ca disorders were severe and fruit large, bitter pit was observed despite early season calcium chloride sprays. Soil calcium thiosulphate application and foliar sprays of acidified calcium carbonate suspensions failed to meaningfully augment harvest fruit Ca concentrations and affect bitter pit incidence.

Free access

Tara Auxt Baugher, Richard Marini, James R. Schupp, and Christopher B. Watkins

The high susceptibility of ‘Honeycrisp’ to bitter pit is not well understood. Crassweller and Smith (2016) found levels of Ca in foliar tissue were lower in ‘Honeycrisp’ than in ‘Cameo’. Cheng (2016) reported lower fruit levels of Ca in

Free access

David R. Rudell, John K. Fellman, and James P. Mattheis

Repeated preharvest applications of methyl jasmonate (MJ) to 'Fuji' apple [Malus sylvestris var. domestica (Borkh.) Mansf.] fruit were evaluated for impacts on peel color, size, fruit finish, and maturation. MJ treatments at 2 week intervals began 48 days after full bloom (DAFB) (early season) or 119 DAFB (late season) and fruit were harvested 172 DAFB. MJ treatment stimulated significant increases in peel red color following the initial application and thereafter. Early season MJ treatment reduced fruit diameter and length to diameter ratio but slowed softening and starch hydrolysis. Fruit receiving late season MJ treatments had increased incidence of bitter pit and splitting, shorter green life, and slower softening. Results suggest preharvest application of MJ impacts apple color development and other aspects of fruit quality. Chemical name used: methyl 3-oxo-2-(2-pentenyl)cyclopentane-1-acetate (methyl jasmonate).

Free access

Corina Serban and Lee Kalcsits

Bitter pit is a physiological disorder that has long been associated with low fruit Ca concentrations. The symptoms appear as depressed brown lesions on the skin of the fruit, typically located directly below the peel, but are often found scattered

Free access

James P. Mattheis, David R. Rudell, and Ines Hanrahan

susceptibility to bitter pit ( Bedford, 2001 ; Rosenberger et al., 2001 ). Bitter pit symptoms include brown, dry areas typically just below the peel, typically ranging in size from 1 to 5 mm with adjacent peel also brown. Fruit nutrient content ( Rosenberger et

Free access

Alan R. Biggs and Gregory M. Peck

Although ‘Honeycrisp’ apples are very popular with consumers, they are prone to a number of production difficulties, which in turn make them challenging to grow and store. One of these challenges is bitter pit, a physiological disorder that has long

Full access

D.A. Rosenberger, J.R. Schupp, S.A. Hoying, L. Cheng, and C.B. Watkins

Control of bitter pit in `Honeycrisp' apples (Malus ×domestica) from trees treated during the growing season with foliar sprays of trifloxystrobin fungicide and calcium was evaluated in four replicated trials over 2 years. All trials were in commercial orchards of `Honeycrisp' trees that were 3 to 6 years old. The effectiveness of combining boron with foliar applications of calcium chloride (CaCl2) was evaluated in two trials, and effectiveness of harpin protein, used either alone or in alternating sprays with CaCl2 was assessed in one trial. Trifloxystrobin applied twice during the 30 days before harvest reduced bitter pit incidence at harvest in one of the four trials, but the reduction was transitory, no longer being evident when fruit were re-evaluated after 63 days of cold storage. Harpin protein did not affect disorder incidence. Calcium sprays failed to control bitter pit in treatments where the total elemental calcium applied was less than 2.7 lb/acre (3.03 kg·ha–1) per year for tree canopies that were sprayed to drip using 100 gal/acre (935.4 L·ha–1) of spray solution. In the two trials where some treatments involved application of at least 2.9 lb/acre (3.25 kg·ha–1) of elemental calcium per season, the incidence of fruit with bitter pit at harvest was reduced by 76% to 90%. Effectiveness of calcium sprays for bitter pit control was not enhanced by superimposing trifloxystrobin, boron, or harpin protein treatments. Flesh firmness at harvest was lower in calcium-treated than in non-treated fruit, and fruit maturity was more advanced on trees receiving boron sprays than on trees receiving no boron. In one trial, where the first calcium application was made approximately 2 weeks after petal fall and 4 days prior to a fruit thinning spray, crop load of trees that received calcium sprays, measured as number of fruit per cm2 trunk cross-sectional area, was 38% greater than on trees that received no calcium sprays. CaCl2 provided better control of bitter pit in `Honeycrisp' than any of the other materials tested.

Open access

K. J. Scott, R. B. H. Wills, and C. M. C. Yuen

Abstract

Phorone reduced bitter pit of apples during 4 seasons. The degree of control varied between cultivars and seasons. The study was carried out in 3 Australian states and New Zealand and involved ‘Cox's Orange Pippin’, ‘Golden Delicious’, ‘Granny Smith’, and ‘Twenty Ounce’. The apples were held in sealed or unsealed polyethylene bags, and the chemical was placed in small containers among the fruit or was injected into the core. Phorone was as effective in reducing bitter pit as a postharvest dip in 4% (w/w) calcium chloride, but it sometimes induced an off flavor. Chemical names used: 2,6-dimethyl-2-5-heptadien-4-one (phorone).