Search Results

You are looking at 1 - 10 of 43 items for :

  • Refine by Access: All x
Clear All
Free access

B. G. Cobb, D. L. Andrews, D. M. MacAlpine, J. R. Johnson, and M. C. Drew

We have been examining the response of maize seedling roots to oxygen stress. Previously, we have shown that maize seedlings with primary root lengths of 10cm or greater require a pretreatment with low oxygen (hypoxia) for survival of greater than 12 hours of anoxia. During the pretreatment there is induction of mRNA and increase in enzymatic activity of alcohol dehydrogenase (ADH) and other enzymes that are necessary for alcoholic fermentation. However, we have found that younger seedlings do not need a pretreatment to survive anoxia. They appear to have high levels of ADH and other enzymes that are needed for anaerobic survival at levels equivalent to those that are induced in older seedlings. These results suggest that, at the time of seedling emergence, seedlings may be more adapted to oxygen stress than during later stages of growth.

Free access

Nicole L. Waterland and Richard J. Gladon

subsequently with a resultant 100% stand establishment. Hypoxia (O 2 levels 5% or less) and anoxia (O 2 levels of 0%) suppress seedling and plant growth and inhibit metabolism in several species. Root growth of salt marsh plants at 2.5% to 10% O 2 was

Free access

Michelle R. Botelho and Justine E. Vanden Heuvel

Cranberry production involves the use of flooding for several purposes during the growing season, including pest control, winter protection, and harvest. The effect of the dissolved oxygen concentration in floodwater on carbohydrate concentration of uprights and roots during flooding was investigated using potted `Stevens' cranberry (Vaccinium macrocarpon Ait.) vines. Pots were placed in large bins filled with water to simulate a spring pest control flood (called late water) over a 21-day period. Two treatments were applied: oxygenated and nonoxygenated (control). Uprights and roots were collected every 3 days and prepared for HPLC analysis to quantify nonstructural carbohydrate concentration. Soluble sugar (sucrose, glucose, and fructose) and starch concentration, as well as total nonstructural carbohydrate (TNSC) concentration, decreased over the 3-week period in uprights but not roots regardless of treatment. Interestingly, the sucrose, glucose, fructose, and starch concentrations of uprights in the oxygenated treatment were lower than those of uprights in the control treatment throughout the experiment. This research indicates that vines in flooded bogs demonstrate a net carbon loss, resulting in reduced carbohydrate concentration available for growth and fruit production.

Free access

Kirk D. Larson, Bruce Schaffer, and Frederick S. Davies

The effect of flooding on container-grown `Tommy Atkins' mango (Mangifera indica L.) trees on two rootstock, and on container-grown seedling `Peach' mango trees, was investigated by evaluating vegetative growth, net gas exchange, and leaf water potential. In general, flooding simultaneously reduced net CO2 assimilation (A) and stomatal conductance (gs) after 2 to 3 days. However, flooding did not affect leaf water potential, shoot extension growth, or shoot dry weight, but stem radial growth and root dry weight were reduced, resulting in larger shoot: root ratios for flooded trees. Mortality of flooded trees ranged from 0% to 45% and was not related to-rootstock scion combination. Hypertrophied lenticels were observed on trees that survived flooding but not on trees that died. The reductions in gas exchange, vegetative growth, and the variable tree mortality indicate that mango is not highly flood-tolerant but appears to possess certain adaptations to flooded soil conditions.

Open access

Emily Merewitz

from sudden reaeration can determine whether a plant is tolerant or sensitive to anoxia ( Blokhina et al., 1999 ). Plants have an antioxidant system to defend their cells from oxidative stress and the responsiveness of this system could play a role in

Free access

Takaya Moriguchi and Roger J. Romani

A strong association is implicit between mitochondrial function and the energy demands of cells responding to stress. Yet, the dynamics of this organelle-cellular dependency have been difficult to resolve. This study examines a new diagnostic parameter namely, mitochondrial maintenance and self-restoration as exhibited by the course of respiratory functions (states 3 and 4 respiratory rates, respiratory control) of mitochoudria extracted during and after exposure of intact `Hass' avocado (Persea americana) fruit to different stress atmospheres: anoxia (100% N2) or high (25% and 75%) CO2 for varying durations. Comparisons are made with direct exposure of the mitochondria themselves to similar atmospheres. In general, exposure of the fruit to CO2 rich atmospheres enhanced the capacity of their mitochondria to restore energy-linked functions whereas anoxia caused irreparable damage. The physiological (climacteric) state of the fruit also affected the stress capacity of the mitochondria contained therein, anaerobiosis being more harmful to mitochondria in riper fruit. In contrast to their effects in vivo, in vitro anoxia appeared to sustain mitochondrial energy-linked functions, whereas high CO2 was clearly harmful. These and other observations are discussed in the context of mitochondrial self-restoration or homeostasis and its relevance to postharvest stress-atmosphere storage for purposes such as pathogen suppression or insect control.

Free access

Seong-Hee Lee, Soon-Ho Ha, and Gap-Chae Chung

In order to diagnose the nutritional disorders caused by various environmental stress, biochemical test, xylem sap analysis and colorimetric petiole analysis were used to assay symptoms well before the severe development. Among the various enzymatic analysis, alkaline phosphatase activity was highly specific to calcium deficiency while in vivo nitrate reductase activity was not stable parameter in response to nitrogen deficiency. Determination of nitrogen, phosphorus and magnesium by colorimetric petiole analysis was sensitive to induced deficiencies. The status of potassium in the plant, however, could be better determined with the xylem sap analysis. Salinity stress induced by low osmotic potential of the nutrient solution increased the activity of alkaline phosphatase, showing similar results as calcium deficiency. Magnesium and phosphorous contents by the colorimetric petiole analysis were particularly low when the roots in anoxia.

Free access

Manuela Zude-Sasse, Ulrich Hartmond, Georg Ebert, and Peter Lüdders

Soil flooding reduces partial pressure of oxygen (pO2) in the root zone and often results in a reduction in photosynthesis and growth. In greenhouse studies, rooted stem cuttings of the mango (Mangifera indica L.) rootstock selection 13/1 were exposed to anoxia by saturating the root zone with N2 for up to 52 h. Reduced pO2 in the root zone affected the energy status of the roots and particularly enhanced the phosphorylated and nonphosphorylated pyridine nucleotide charges—the ratio of reduced Nicotinamide-adenine-dinucleotides [NAD(P)H] to total Nicotinamide-adenine-dinucleotide content [oxidized NAD(P)+ plus NAD(P)H]—that drive the redox reaction rates in cell metabolism. Also, the pyridine nucleotide charges in leaves were enhanced, while the photosynthetic rate decreased following reduction in pO2 in the root zone. During up to 4 h of reduced pO2, the ratio of internal CO2 concentration in the mesophyll to ambient CO2 concentration was unchanged. This implies a nonstomatal influence on photosynthesis. In addition, light saturation of photosystem II occurred at lower irradiance (470 μmol·m-2·s-1) resulting in reduced maximum photochemical efficiency below that of the high pO2 controls. After 28 h of reduced pO2, NAD(P) charges in the leaves returned to normal, diminishing its potential effect on net photosynthetic rate.

Free access

Bruce Schaffer, Frederick S. Davies, and Jonathan H. Crane

The effects of flooding calcareous soil on physiology and growth have been studied for several subtropical and tropical fruit crops including avocado (Persea americana Mill.), mango (Mangifera indica L.), carambola (Averrhoa carambola L.), and several Annona species. In calcareous soils that have a high pH, short-term flooding can actually be beneficial to subtropical and tropical fruit crops by increasing the solubility of particle-bound nutrient elements such as Fe, Mn and Mg due to flooding-induced decreases in soil pH. Additionally, flooding reduces the redox potential in the soil, resulting in Fe being reduced from Fe3+ to Fe2+, which is the cation metabolized by plants. As with other woody perennial crops, one of the early physiological responses of subtropical and tropical fruit trees to flooding is a decrease in stomatal conductance and net CO2 assimilation. If the flooding period is prolonged, lack of O2 (anoxia) in the soil results in a reduction of root and shoot growth, wilting, decreased nutrient uptake and eventual death. The flooding duration required to cause tree mortality varies among species, among cultivars within species, and with environmental conditions, particularly temperature. Several tropical and subtropical fruit crops have anatomical or morphological adaptations to tolerate prolonged flooding, such as development of hypertrophied stem lenticels, adventitious rooting or formation of porous aerenchyma tissue. For grafted trees, flooding-tolerance is conferred by the rootstock and not the scion. Therefore there is a possibility to increase flood tolerance of subtropical and tropical fruit crops by identifying or developing flood-tolerant rootstocks.

Full access

Bo Xiao and David Jespersen

flooding has subsided. Understanding turfgrass responses to waterlogging is needed to identify adaptive traits related to waterlogging tolerance. To relieve tissue anoxia under waterlogging conditions, most flood-tolerant species are capable of developing