Search Results

You are looking at 81 - 90 of 1,248 items for :

  • molecular markers x
  • Refine by Access: All x
Clear All
Free access

Hong Y. Yang, Schuyler S. Korban, Jutta Kruger, and Hanna Schmidt

Apple scab, caused by Venturia inaequalis (Cke.) Wint., is the most serious disease of apple trees. Resistance to V. inaequalis, derived from the small-fruited species Malus floribunda 821, is determined by a major dominant gene Vf. Our major objective is to identify RAPD markers linked to the Vf gene. The approach in this paper is based on the introgression of the Vf gene from M. floribunda into commercial cultivars. Almost 200 random sequence decamer-primers have been used to screen a pair of bulked samples and the donor parent M. floribunda clone 821 for markers linked to the Vf gene conferring resistance to apple scab. A single primer has been identified which generated a PCR fragment, OPK16/1300, from the donor parent M. floribunda clone 821 and the scab-resistant selections/cultivars bulk, but not from the scab-susceptible recurrent parent bulk. Co-segregation analysis using a segregating apple progeny and polymorphism analysis of individual scab-resistant Coop selections/cultivars have confirmed that this marker is linked to the scab-resistance gene Vf. OPK16/1300 has since been cloned and sequenced. Sequence-specific primers of 25 oligonucleotides based on the marker have been synthesized and used to screen further M. floribunda clone 821, scab-susceptible apple cultivars, scab-resistant apple cultivars, and scab-resistant Coop selections. The sequence-specific primers have identified polymorphisms of OPK16/1300 based on the presence or absence of a single band.

Free access

Antonio Figueira, Jules Janick, and Peter Goldsbrough

RAPD markers were used to examine genetic similarity in cacao. DNA from 30 cacao cultivars amplified using 15 arbitrary oligonucleotide primers, produced a total of 112 fragments, of which 88% were polymorphic. A phenogram was developed which illustrates the genetic relationships among the cacao cultivars representing the four major geographic groups of cacao (Criollo, Trinitario, Forastero Lower Amazonian, and Forastero Upper Amazonian). The phenogram indicated a general separation of the four groups into three clusters. Criollos and Trinitarios (supposedly hybrids between Forastero and Criollos types) appeared in a single cluster. Lower Amazonian cultivars (mainly selections made in Bahia, Brazil) appeared in a separate cluster. The third cluster consisted of the Upper Amazonian cultivars, which were originally collected from the region believed to be the center of origin of this crop. This cluster displayed the furthest genetic distance from the others. Crosses between Upper Amazon germplasm and local selections have shown heterosis in clonal crosses, which has been exploited in all genetic improvement programs for cacao. We propose that genetic distances based on RAPD markers can be potentially used as a criterion to select parents capable of producing superior hybrids and populations. Genetic relationships can also be useful to define germplasm collections and conservation strategies. Studies are underway to compare phenograms derived from RAPD markers and ribosomal RNA gene polymorphisms.

Free access

R.N. Trigiano, K.M. Kaveriappa, S.E. Schlarbaum, M.T. Windham, and W. Witte

DNA amplification fingerprinting (DAF) was Used to characterize both parents (different cultivars) in breeding experiments with Cornus florida. Putative hybrids were fingerprinted and true crosses identified by finding unique male parent products in amplification profiles. Both manual and honey bee mediated pollinations successfully produced hybrid seed. Axillary buds from seedlings were used to initiate proliferating shoot cultures on woody plant medium with 4.5 μm BA. Initiation and development of adventitious roots were dependent on IBA (4.1 μm), sucrose (0–2%), and agar (0.2–0.6%) concentrations. About 40–50% of the microshoots produced roots and were acclimatized to greenhouse conditions. Cultures have been maintained without loss of regeneration potential for over 2 years. Clonal material can be reentered into the breeding program or used to evaluate horticultural characteristics in different environments and locales.

Free access

Yiqi Zhen, Zuozhou Li, Hongwen Huang, and Ying Wang

Forty-eight kiwifruit cultivars and selections, representing more than 90% of total world kiwifruit production, were investigated using nine SSR markers to establish genetic identities, and evaluate genetic diversity and relatedness. These nine SSRs were polymorphic and a total of 213 alleles were detected, resulting in a mean number of 23.7 alleles per locus, ranging from nine to 38 alleles. One hundred and thirty-three alleles were found to be common to both A. chinensis and A. deliciosa, while 33 and 36 were specific to A. chinensis and A. deliciosa, respectively. In addition, 34 alleles were specific to one single genotype and provided a set of valuable alleles for cultivar identification. A single SSR locus UDK 96-414 could differentiate all 48 genotypes except two presumable clones. Mean number of alleles per locus (A), percentage of polymorphic loci (P), and direct count heterozygosity (Ho) assessed for each genotype over all loci revealed considerable differences among these 48 genotypes. On average, A = 2.6, P = 89.4% and Ho = 0.546 were found in A. chinensis cultivars, while A = 3.5, P = 97.0% and Ho = 0.671 in A. deliciosa cultivars. Consensus fingerprint profiling using SSR markers is a useful and reliable method for establishing genetic identities of kiwifruit cultivars and selections. It also improves evaluation effectiveness of genetic diversity and relatedness compared to RAPD markers.

Free access

W.V. Baird, R.E. Ballard, S. Rajapakse, and A.G. Abbott

Free access

Kentaro Kitahara, Shogo Matsumoto, Toshiya Yamamoto, Junichi Soejima, Tetsuya Kimura, Hiromitsu Komatsu, and Kazuyuki Abe

We examined the genetic diversity and relatedness among apple (Malus ×domestica Borkh.) cultivars in Japan. The 42 apple cultivars, including major cultivars in Japan, were divided into five groups based on SSR genotypes. Most economically important cultivars belong in three groups: Fuji-Delicious, Golden Delicious, and Jonathan groups, and their genetic backgrounds seemed to be narrow. We also investigated the parent-offspring relationships of nine apple cultivars. `Jonathan', `Fuji', and `Rero 11' were identified as the respective paternal parents of three cultivars described as having unknown paternal parents (i.e., `Akagi', `Ambitious', and `Hokuto'). `Starking Delicious', `Senshu', and `Golden Delicious', rather than `Ralls Janet', `Hatsuaki', and `Indo', seemed to be the paternal parents of `Kinsei', `Kiou', and `Mellow', respectively. `Carolina Red June' was excluded as a paternal parent of `Ranzan'. Both attributed parents of `Scarlet' (`Akane' and `Starking Delicious') were excluded, and it was suggested that `Fuji' was used as either a maternal or a paternal parent of `Scarlet'. `Jonathan' rather than `McIntosh' seems to be a maternal parent of `Yukari'.

Free access

Darlene M. Lawson, Minou Hemmat, and Norman F. Weeden

Five morphological and developmental traits (branching habit, vegetative budbreak, reproductive budbreak, bloom time, and root suckering) were analyzed in a family obtained from the apple (Malus domestica Borkh) cross `Rome Beauty' × `White Angel'. The phenotypic variation in these traits was compared with a selected set of marker loci covering the known genome of each of the parents to locate genes with major effects on the traits. The contrasting branching habits of the two parents appeared to be controlled by at least two loci. One of these, Tb, governed the presence or absence of lateral branches, particularly on the lower half of shoots. The locus was heterozygous in `White Angel' and was mapped to a 5 CM interval on linkage group 6. At least one other locus conditioning spur-type branching appeared to be segregating, but the locus or loci could not be linked to segregating markers. The timing of initial vegetative growth was tightly associated with the chromosomal region in which the Tb gene is located and maybe a pleiotropic effect of this gene. Time of reproductive budbreak correlated with segregation at the isozyme marker, Prx-c, on linkage group 5. Variation in time of bloom and later stages in flower development appeared to be controlled by different genes not linked to Prx-c. The tendency to produce root suckers cosegregated with a marker on `White Angel' linkage group 1, suggesting control by a single locus, Rs. Data from a `Rome Beauty' x `Robusta 5' family provided additional information on the inheritance of these traits.

Free access

Margaret R. Pooler, Louise G.H. Riedel, S.E. Bentz, and A.M. Townsend

Controlled pollinations were made between five hemlock (Tsuga) species from eastern North America and Asia, resulting in over 5700 germinating seedlings. A subset of putative hybrid seedlings from each cross was tested for authenticity by various DNA marker systems. The most reliable and useful system for verifying hybrids was amplified fragment-length polymorphism (AFLP) markers. Hybridizations between the eastern North American species, T. canadensis [L.] Carriere and T. caroliniana Engelm., and the Asian species, T. chinensis (Franch.) E. Pritz., were used as a model to test the inheritance, reliability, and ease of use of these markers. Using AFLP markers, we were able to verify 58 hybrids between T. caroliniana and T. chinensis, one hybrid between T. caroliniana and T. canadensis, but could find no definitive hybrids between T. canadensis and T. chinensis. Results using other marker systems, including RAPD, SCAR, ITS, and SSR, are also presented.

Free access

Soon O. Park, Dermot P. Coyne, and James R. Steadman

Bean rust, caused by Uromyces appendiculatus, is an important disease of common bean (Phaseolus vulgaris L.). The objective was to identify RAPD markers linked to the gene (Ur-6) for specific resistance to rust race 51 using bulked segregant analysis in an F2 segregating population from the common bean cross pinto `Olathe' (resistant to rust) × great northern Nebraska #1 selection 27 (susceptible to rust). A single dominant gene controlling specific resistance to race 51 was hypothesized based on F2 segregation, and then was confirmed in the F3 generation. A good fit to a 3:1 ratio for band presence to band absence for each of three markers was observed in 100 F2 plants. Three RAPD markers were detected in a coupling phase linkage with the Ur-6 gene. Coupling-phase RAPD marker OAB14.600 was the most closely linked to the Ur-6 gene at a distance of 3.5 cM among these markers. No RAPD markers were identified in a repulsion phase linkage with the Ur-6 gene. The RAPD markers linked to the gene for specific rust resistance of Middle American origin detected here, along with other independent rust resistance genes from other germplasm, could be utilized to pyramid multiple genes into a bean cultivar for more durable rust resistance.

Free access

James R. McFerson, Warren F. Lamboy, and Steve Kresovich

57 WORKSHOP 8 Use of Molecular Markers in Germplasm Management