Search Results

You are looking at 81 - 90 of 530 items for :

  • bermudagrass x
  • Refine by Access: All x
Clear All
Full access

Filippo Rimi, Stefano Macolino, and Bernd Leinauer

Over the last few years the use of warm-season grasses, such as bermudagrass and zoysiagrass, has rapidly increased in the Mediterranean countries of Europe ( Croce et al., 2001 ; Volterrani et al., 1997 ). These species are also becoming very

Full access

Ada Baldi, Anna Lenzi, Marco Nannicini, Andrea Pardini, and Romano Tesi

diagnose possible nutritional disorders and to monitor the effectiveness of a fertility program ( Landschoot, 2003 ; McCrimmon, 2001 ). Several studies report nutrient data for warm season turfgrass including bermudagrass ( Cynodon sp.), the most widely

Free access

Patrick E. McCullough, Haibo Liu, Lambert B. McCarty, and Ted Whitwell

Research was conducted in two studies at the Clemson University Greenhouse Complex, Clemson, S.C., with the objective of evaluating `TifEagle' bermudagrass (Cynodon dactylon × C. transvaalensis) response to paclobutrazol. TifEagle bermudagrass plugs were placed in 40 cm polyvinylchloride containers, with 20.3-cm-diameters and built to U.S. Golf Association specifications with 85 sand: 15 peatmoss (by volume) rootzone mix. Paclobutrazol was applied to separate containers at 0, 0.14, 0.28, and 0.42 kg·ha-1 (a.i.) per 6 weeks. Minor phytotoxicity occurred with 0.14 kg·ha-1 applications, but turf quality was unaffected. Severe bermudagrass phytotoxicity occurred from paclobutrazol at 0.28 and 0.42 kg·ha-1. Total clipping yield from 12 sampling dates was reduced 65%, 84%, and 92% from 0.14, 0.28, and 0.42 kg·ha-1, respectively. Root mass after 12 weeks was reduced 28%, 45%, and 61% for turf treated 0.14, 0.28, and 0.42 kg·ha-1, respectively. Paclobutrazol reduced root length 13%, 19%, and 19% by 0.14, 0.28, and 0.42 kg·ha-1, respectively. Turf discoloration and negative rooting responses advocate caution when using paclobutrazol on `TifEagle' bermudagrass. Chemical names used: (+/-)-(R*,R*)-ß-[(4-chlorophenyl) methyl]-alpha-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol).

Full access

Stefano Macolino, Matteo Serena, Bernd Leinauer, and Umberto Ziliotto

cool-season grasses is encouraged in Mediterranean countries in an effort to reduce water consumption for landscape irrigation. Unlike cool-season grasses, warm-season species such as bermudagrass are cold sensitive and will lose color when dormant

Free access

Kristen L. McDowell*, Kevin Ong, and Derald A. Harp

A study was conducted on the Texas A&M Univ.-Commerce campus to evaluate the effect of compost type on the spread of bermudagrass into rose garden beds. Roses were planted in an randomized complete-block design in beds amended with composts derived from yard waste, manure, poultry litter, or dairy manure, or an unamended control. The study site was free of vegetation prior to planting. No pre- or post-emergent herbicides were applied after planting. Each bed was assessed visually monthly and scored on a scale of 0 to 10, with each point equivalent to 10% coverage. A bed received a score of 10 upon full coverage. Beds amended with poultry litter and yard waste had significantly higher bermudagrass invasion and reached 100% coverage more quickly than other treatments. Some of the poultry litter beds reached 100% coverage within 40 days of planting. The control planting had significantly lower coverage than all compost treatments throughout the study.

Free access

G.C. Munshaw, X. Zhang, and E.H. Ervin

Bermudagrass [Cynodon dactylon (L.) Pers.] is widely used along its northern limit of adaptation. However, cold hardiness and winter survival are common concerns facing turfgrass managers in these areas. The objective of this study was to determine the effects of moderate salinity applications on bermudagrass cold hardiness. Two trials were conducted in Summer 2002. The cultivar Princess was seeded into pots in a glasshouse at a rate of 24 kg·ha-1. Pots received a weekly solution of 20-20-20 at a rate of 4.9 kg·ha-1 N. Bi-weekly salinity treatments began ≈2 months after germination and consisted of 0, 5, 20, and 40 dS·m-1 in the form of NaCl. These treatments continued for ≈8 weeks. Weekly quality ratings and chlorophyll fluorescence measurements showed similar results, with the high salinity treatments having the poorest quality. Soil electrical conductivity measurements showed a significant increase for the high salinity rates over the lower rates at the end of the trials. Proline concentrations increased with increasing salinity treatments in Trial 1 and were highest with the 20 dS·m-1 rate in Trial 2. Plants were acclimated in a growth chamber, and artificial freezing tests revealed that the 5 and 20 dS·m-1 treatments had the highest percentage of regrowth after freezing. These results indicate that moderate applications of salt or the use of effluent water prior to hardening may be an important way to increase bermudagrass cold hardiness.

Free access

Patrick E. McCullough, Haibo Liu, and Lambert B. McCarty

Plant growth regulators are applied to inhibit uneven shoot growth of putting green turf but research is limited on responses of dwarf-type bermudagrass cultivars to growth inhibition. Experiments were conducted at the Clemson University Greenhouse Complex with `Champion' and `TifEagle' bermudagrass grown in polyvinylchloride containers with 40 cm depths and 177 cm2 areas built to United States Golf Association specification. Flurprimidol was applied at 0.14, 0.28, and 0.48 kg·ha–1 a.i. and paclobutrazol at 0.14 kg·ha–1 a.i. on separate containers. Flurprimidol at 0.28 and 0.42 kg·ha-1 caused 17% and 31% reduction in turf color 5 weeks after treatment (WAT), respectively. `Champion' exhibited unacceptable turf injury (>30%) 2 WAT from paclobutrazol and all flurprimidol rates. `TifEagle' had unacceptable turf injury from flurprimidol at 0.42 kg·ha–1 2 WAT, 0.28 kg·ha–1 3 WAT, and 0.14 kg·ha–1 4 WAT that did not recover. Moderate injury (16% to 30%) was observed from paclobutrazol on `TifEagle' but ratings were acceptable. After 6 weeks, flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1 reduced bermudagrass green shoot density (GSD) per square centimeter by 20%, 40%, and 40%, respectively, while paclobutrazol reduced GSD 12%. `TifEagle' total clipping yield was reduced 60%, 76%, and 86% from flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1, respectively, and 37% from paclobutrazol. `Champion' total clipping yield was reduced 82%, 90%, and 90% from flurprimidol at 0.14, 0.28, and 0.42 kg·ha–1, respectively, and 58% from paclobutrazol. After 6 weeks, flurprimidol reduced `Champion' total root mass by 44% over all three rates. `Champion' treated with paclobutrazol had similar total root mass to the untreated. `TifEagle' treated with all PGRs had similar rooting to the untreated. Overall, flurprimidol will likely not be suitable for dwarf bermudagrass maintenance at these rates; however paclobutrazol may have potential at ≤0.14 kg·ha–1. Chemical names used: Flurprimidol {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol}; Paclobutrazol, (+/-)–(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol.

Free access

Wayne W. Hanna, S. Kristine Braman, and Brian M. Schwartz

‘ST-5’ turf bermudagrass is an interspecific [ Cynodon transvaalensis Burt-Davy × C. dactylon (L.)] shade-tolerant triploid (2n = 3x = 27 chromosomes) hybrid cultivar released cooperatively by the University of Georgia College of Agricultural

Full access

William T. Haller, Lyn A. Gettys, and Taizo Uchida

the northern range of its distribution. Bermudagrass ( Cynodon dactylon ) is a fine-textured high-maintenance turfgrass that is most often used on golf courses, athletic fields, and other high-profile areas. There are many bermudagrass varieties and

Full access

Michelle M. Wisdom, Michael D. Richardson, Douglas E. Karcher, Donald C. Steinkraus, and Garry V. McDonald

bulbs can persist in zoysiagrass ( Zoysia japonica Steud.) and bermudagrass ( Cynodon dactylon ) in transition zone environments, providing color and biodiversity to dormant turfgrass situations. However, both studies examined a small number of bulb