Search Results

You are looking at 81 - 90 of 813 items for :

  • bedding plant x
  • Refine by Access: All x
Clear All
Free access

Brian A. Krug, Brian E. Whipker, Ingram McCall, and Jonathan Frantz

) eliminated Ca deficiency in lettuce through enhanced transpiration by increasing the flow of low-humidity air directly over the meristem. During germination, seeds of bedding plants are maintained in growing conditions near 100% RH. Once the plants have

Free access

Efstratia Papanikou and Paul H. Jennings

Previous research has shown that low-temperature storage can be used to maintain bedding plants in plug trays when weather conditions in spring make scheduling of transplanting difficult. The objective of this study was to determine what physiological changes occur during the short-term, low-temperature storage of plug seedlings. Plants of two bedding plant species, Geranium and Vinca, were stored at 2, 6, or 10°C and under low light or dark conditions for 4 weeks. Data were collected at three sampling dates (0, 2, or 4 weeks after beginning of storage) and included dry and fresh mass, total leaf area, leaf chlorophyll content and chlorophyll fluorescence as well as electrolyte leakage and soluble sugar content of leaf and root tissue. The parameters will be discussed in relationship to plug seedling survivability, quality, and growth responses under the experimental storage treatments.

Free access

H. Brent Pemberton and William E. Roberson

The East Texas Bedding Plant Pack and Garden Performance Trials are performed as an interaction between the plant material source companies, the plant producer companies, volunteers, and retail consumers. The Overton Trial Site is located near a concentration of bedding plant growers ($80 million annual wholesale value) which is part of the close to $500 million in ornamental plant production in northeast and north central Texas, about half of the state industry value. The spring and fall trials consist of two phases. The greenhouse phase consists of assessing production performance for use by the crop production industry. Crops are usually finished in packs (36 cells per flat), but larger size containers are used as needed according to species. Height control is a major issue and specific issues have been addressed. This is one way that publishable data can be generated by these trials. The garden phase consists of assessing garden performance in a replicated field setting at the Overton site. Garden performance is also assessed for many of the entries at sites at the Dallas Arboretum and Botanical Garden and the Texas A&M Univ. Agricultural Research and Extension Center at Dallas. An integral part of the trials are the volunteers who, as members of the Smith County Master Gardener Association, donate hundreds of hours of labor to the seeding, transplanting, and garden establishment phases of the trials. In addition, a web site has been initiated as the only practical way to share the data and hundreds of images that are generated each trial season.

Full access

Timothy K. Broschat and Kimberly A. Moore

Salvia (Salvia splendens) `Red Vista' or `Purple Vista,' french marigold (Tagetes patula) `Little Hero Orange,' bell pepper (Capsicum annuum) `Better Bell,' impatiens (Impatiens wallerana) `Accent White,' and wax begonia (Begonia ×semperflorens-cultorum) `Cocktail Vodka' were grown in 0.95-L (1-qt) containers using a 5 pine bark: 4 sedge peat: 1 sand substrate (Expts. 1 and 2) or Pro Mix BX (Expt. 2 only). They were fertilized weekly with 50 mL (1.7 fl oz) of a solution containing 100, 200, or 300 mg·L-1 (ppm) of nitrogen derived from 15N-6.5P-12.5K (1N-1P2O5-1K2O ratio) or 21N-3P-11.7K (3N-1P2O5-2K2O ratio) uncoated prills used in the manufacture of controlled-release fertilizers. Plants grown with Pro Mix BX were generally larger and produced more flowers or fruit than those grown with the pine bark mix. With few exceptions, plant color, root and shoot dry weights, and number of flowers or fruit were highly correlated with fertilization rate, but not with prill type. There appears to be little reason for using the more expensive 1-1-1 ratio prills, since they generally did not improve plant quality and may increase phosphorous runoff from bedding plant nurseries.

Free access

Genhua Niu, Denise S. Rodriguez, and Yin-Tung Wang

The effect of drought on the growth and gas exchange of six bedding plant species—agastache [Agastache urticifolia (Benth.) O. Kuntze `Honeybee Blue'], dusty miller (Cineraria maritima L. `Silverdusty'), petunia (Petunia ×hybrida `Wave Purple'), plumbago (Plumbago auriculata Lam. `Escapade'), ornamental pepper (Capsicum annuum L. `Black Pearl'), and vinca [Catharanthus roseus (L.) G. Don `Titan']—was quantified under greenhouse conditions. Seeds were sown in January and seedlings were grown in the greenhouse until 18 Apr., when two irrigation treatments—drought (D, ≈18% volumetric moisture content at reirrigation) and control (C, ≈25% volumetric moisture content at reirrigation)—were initiated. Leaf net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E) were determined in response to a range of substrate moisture content (from ≈5% to 30% by volume) and temperature (from 20 °C to 40 °C). Dry weight of agastache, ornamental pepper, and vinca was unaffected by drought, whereas that of other species was reduced. Leaf area of plumbago and height of plumbago and vinca were reduced by drought. As substrate moisture content decreased from 25% to 10%, Pn, E, and gs decreased linearly in all species except petunia and plumbago. Leaf net photosynthetic rate of all species declined as leaf temperature increased from 20 °C to 40 °C. In contrast, E of all species, except petunia, increased as temperature increased. Transpiration rate of petunia increased as temperature increased from 20 °C to 30 °C, and then decreased between 30 °C and 40 °C. Although petunia had the highest Pn among the tested species, its Pn and gs declined more rapidly compared with the other species as temperature increased from 20 °C to 40 °C or as substrate moisture content decreased, indicating that petunia was most sensitive to high temperature and drought.

Free access

Rebecca A. Schnelle and James E. Barrett

The paclobutrazol liner dip is a plant growth regulator application technique that is becoming widespread in the commercial bedding plant industry. This technique, in which plug trays are dipped in a solution of paclobutrazol before transplant, is an efficient method for applying this growth regulator to a large number of plants. In previous studies, significant variability in size control was documented following liner dip treatments with identical solution concentrations. To elucidate the causes of this variability, three bedding plant species with varying levels of paclobutrazol sensitivity (Petunia ×hybrida, Impatiens wallerana, and Scaevola aemula) were treated with paclobutrazol liner dips under various conditions. Four factors identified in previous studies that may impact the efficacy of paclobutrazol liner dips were evaluated in this study. The age of the cuttings at the time of treatment ranged from 2 to 4 weeks after propagation. The light intensity incident to the plants from 2 h before through 2 h following the time of treatment ranged from about 1000 μmol·m-2·s-1 in a greenhouse to 5 μmol·m-2·s-1 indoors. The relative moisture content of the plug media before the treatment was saturated or at 25%, 50%, or 80% dry down by weight, based on air-dried media. The amount of time the plug media remained in the paclobutrazol solution was 10 s, 30 s, or 2 min. Data were collected on stem elongation 3 weeks after transplanting and again 2 weeks later. The results confirm that all four factors tested interact with the concentration of paclobutrazol in the dip solution to determine the control in stem elongation achieved by the treatment.

Free access

Matthew G. Blanchard and Erik S. Runkle

crop time is similar at different day and night temperatures (within limits) that deliver the same MDT. However, studies with bedding plants that compared flowering times at DIF and constant temperatures regimens with the same MDT have reported

Free access

Royal D. Heins, Nathan Lange, and Thomas F. Wallace Jr.

Ageratum, begonia, marigold, and salvia seedlings in plug cells were stored in coolers to determine the effects of temperature, light, and storage time on growth and forcing time of seedlings after transplanting, and to determine the optimum storage temperatures for each crop. Photosynthetic photon flux densities of 0, 1, and 5 μmol·m-2.s-1 were combined with temperatures of 0.0, 2.5, 5.0, 7.5, 10.0, and 12.5C to create 18 storage environments. Sample plants were removed from each treatment at 1-week intervals for 6 weeks, and were forced into flower. In all four species, temperatures of 0.0 and 2.5C caused chilling injury and then death as plants were stored for progressively longer periods. Storage at 0.0 and 2.5C also delayed flowering when chilling injury was not severe enough to cause death. In general, plants stored better in the light than in darkness. Darkness tended to limit the time seedlings could be stored, but for each crop, the addition of just 1 μmol·m-2.s-1 extended the storage durations to 6 weeks at one or more temperatures. Storage of all four species was possible for 6 weeks, but there were significant variations between the temperatures and storage durations each species could tolerate. Optimal temperatures were 5-7.5C for begonia, 5C for marigold, and 7.5C for salvia and ageratum.

Free access

C.E. Wieland, J.E. Barrett, C.A. Bartuska, D.G. Clark, and T.A. Nell

66 ORAL SESSION 15 (Abstr. 478–484) Plant Growth Regulators/Marketing–Floriculture/Foliage

Free access

Paul A. Thomas and Joyce G. Latimer

66 ORAL SESSION 15 (Abstr. 478–484) Plant Growth Regulators/Marketing–Floriculture/Foliage