Search Results

You are looking at 81 - 90 of 1,067 items for :

  • Refine by Access: All x
Clear All
Free access

Douglas A. Hopper and Kevin Cifelli

An interactive simulation model of plant growth must be flexible to accept specific crop equations from the user. ROSESIM functions as a dynamic plant growth model based on `Royalty' rose (Rosa hybrida L) response to 15 unique treatment combinations of photosynthetic photon flux (PPF), day temperature (DT), and night temperature (NT) under constant growth chamber conditions. Environmental factors are assumed constant over an entire day. Coefficients are read from an external ASCII file, thus permitting coefficients from any linear, quadratic, or interaction terms to be input into ROSESIM up to a full quadratic model form. Nonsignificant terms are given a coefficient of zero. ROSESIM has been restructured into Borland C++ object oriented program (OOP) code to execute in the Microsoft Windows 3.1 operating environment. This enables ease of operation in the user friendly graphical user interface (GUI) provided with most IBM personal computers (PC). The user chooses a set of environmental conditions which can be altered after any selected number of days, allowing conditions to be changed and modeled daily for interactive comparison studies.

Free access

Bruce W. Wood

Inadequate cross-pollination of pecan [Carya illinoinensis (Wangenh.) K. Koch] occurred in block-type orchards generally thought exempt from pollination-related crop losses because of an abundance of nearby potential pollinizers. “Off-genotypes” appeared to be potentially major assets in such orchards due to their role as backup pollinizers; hence, their presence insures against crop losses due to poor pollination. Fruit-set in `Desirable' main crop rows declined sigmoidally as distance from 'Stuart' pollinizer rows increased. For 15.4-m row spacings, rate of decrease was maximum between 49 and 78 m, depending on crop year. Maximum fruit-set was in rows immediately adjacent to the pollinizer. Tree age/size and spring temperature influences on the characteristics of flower maturity windows are probably primary factors contributing to pollination-related fruit-set losses in block-type orchards relying upon pollen from a single complementary pollinizer or from neighborhood trees. For example, flower maturity was earlier in older/larger trees, and higher spring temperatures accelerated catkin development relative to that of pistillate flowers. Maximum fruit-set occurred when pistillate flowers received pollen around 1 day or less after becoming receptive, whereas no fruit-set occurred when they were pollinated around four or more days after initial receptivity. These findings indicate that many block-type orchards in the southeastern United States are exhibiting pollination-related crop reductions and that future establishment of such orchards merits caution regarding the spatial and temporal distribution of pollinizers.

Free access

Matt Kelting, J. Roger Harris, Jody Fanelli, and Bonnie Appleton

Application of biostimulants, humate-based products marketed as aids to plant establishment, may increase early post-transplant root growth and water uptake of landscape trees. We tested three distinct types of biostimulants on root growth and sapflow of balled and burlapped red maple (Acer rubrum L. `Franksred') trees. Treatments included: humate, 1) as a wettable powder formulation, applied as a soil drench; 2) as a liquid formulation to which various purported root growth—promoting additives had been added, also applied as a soil drench; 3) as a dry granular formulation, applied as a topdress; and 4) a nontreated control. Root growth was monitored through single-tree rhizotrons, and sap flow was measured with a heat balance sapflow system. Roots were first observed in the rhizotron windows 38 days after planting. No biostimulant-treated trees had more root length than nontreated controls, and the two soil drench treatments had the lowest root length throughout the 20 weeks of post-transplant observation. All biostimulants increased sapflow.

Free access

Thomas E. Marler and Cecil Stushnoff

The influence of plant size on recovery following defoliation of `Tainung 1' papaya was used to study the role of respiratory sink size relative to photosynthetic surface area and the carbohydrate pool size available for remobilization. Defoliated (D) plants at three different ages: oldest, 24 weeks posttransplant (PT), supporting ≈8 weeks of fruit set; intermediate, 10 weeks PT, ≈2 weeks from initial flowering; and youngest, 4 weeks PT, were compared to an equal number of control plants. The oldest plants abscised all fruit <5.5 cm in diameter as a result of defoliation. Increase in stem height and basal circumference ceased on all plants and increase in fruit circumference ceased on the oldest plants following defoliation. Increase in stem height of D plants began again 3 weeks postdefoliation (PD) and returned to that of control plants by 6 weeks PD. Increase in basal circumference of D plants began again 6 weeks PD. Root density was observed on observation windows, and fine roots completely disappeared within 1 week PD. Root density returned to that of control plants by 6 weeks for the youngest and intermediate plants and by 8 weeks for the oldest plants. Increase in fruit circumference of pre-existing fruit for the oldest D plants never returned to that for control plants. These plants began setting fruit again ≈8 weeks PD. Defoliation delayed initial flowering of the intermediate plants 6.5 weeks and of the youngest plants ≈2 weeks. Thus, the greatest impact of defoliation on reproductive growth occurred with the two oldest age groups.

Free access

Loretta J. Mikitzel, Max E Patterson, and John K. Fellman

Walla Walla Sweet onions (Allium cepa L.) have a short storage and marketing season. Studies to determine viable shelf life and to extend post-harvest life with controlled atmosphere (CA) storage were conducted. Onions were exposed to various CA gas mixtures in combination with heat curing (35°C) and/or chlorine dioxide (ClO2) fumigation, to control disease. Preliminary results indicated Botrytis was the primary cause of post-harvest losses. A 1% O2, 5% CO2 atmosphere appeared to maintain onion quality better than other gas mixtures tested during 15 weeks of CA storage (0°C). Carbon dioxide series above 5% show promise in reducing the 35% storage loss that occurred with the 5% CO2 treatment. Curing for at least 72 hours followed by a 1-hour ClO2 fumigation resulted in the least bulb decay and after 15 weeks of storage (1% O2, 5% CO2), 75% of the bulbs were in marketable condition. Onions stored 15 weeks in air (0°C, 70% RH) were unmarketable. Shelf life of freshly harvested onions was 18 days, after which the onions rapidly decayed. After CA storage, shelf life was reduced to 10-14 days due to rapid sprouting. To enjoy a 30-day market window, disease control is necessary for freshly harvested onions and sprouting must be controlled in post-storage onions.

Free access

Robert F. Bevacqua

A research and extension program for increasing vegetable production in southeastern Virginia was launched by Virginia Cooperative Extension in 1997. The launch was triggered by the construction of a shipping point market in Southampton County. First, a market window study identified target crops and the harvest period when they could be most profitably marketed. Target crops were watermelon, sweet corn, snap beans, muskmelon, bell pepper, and pumpkin. Second, a technology transfer program was formulated that emphasized demonstrations, field days, classes, and workshops. On-farm demonstrations of intensive vegetable production techniques formed the foundations of the extension effort and focused on drip irrigation, plastic mulch on raised beds, water and nutrient monitoring, honey bee pollination, and integrated pest management (IPM). “Growing Vegetables for the Commercial Market” was the title of a short course offered in partnership with the local community college. Sixty-five graduates completed the course in 1999. Workshops were offered on farm labor, marketing, irrigation, and production techniques. On-farm research was conducted in support of the emerging vegetable industry. The focus was on sweet corn IPM, variety trials for watermelon and pumpkin, and soil and plant analysis. Information was made available to growers through a bimonthly newsletter, an annual bulletin entitled Commercial Production Recommendations, and VCE postings on the World Wide Web.

Free access

Thomas Björkman

Buckwheat has historically been used to suppress weeds and improve soil condition, but many of the tricks to success have been lost to history. Buckwheat is inexpensive and particularly effective in short windows between crops. We are documenting the techniques of existing experts and complementing that with research. We surveyed northeastern vegetable and strawberry growers to identify what information they need in order to feel confident that they could succeed with a buckwheat cover crop. Top questions include seed availability, types of weeds controlled, relation to other cover crops, volunteer management, and herbicide tolerance. One question tested experimentally was how to establish a full stand with minimum cost. We tested the minimum tillage requirement following pea harvest. No-till resulted in good emergence but slow growth, and dominance by weeds. Disk incorporating the pea residue resulted in excellent growth, which was not further enhanced by chisel plowing before disking. Buckwheat seedlings are intolerant of waterlogging, so deeper tillage may be important in wet years. Sowing buckwheat immediately after tillage resulted in emergence of 35%, leaving gaps large enough for weeds to grow. Waiting 1 week gave an 80% stand and complete weed suppression. Waiting 2 weeks also gave an 80% stand, but weed growth was advanced enough that weed suppression was incomplete. Therefore, a buckwheat cover crop following early vegetables requires light tillage to permit root growth, and up to a week of decomposition. If those provisions are made, complete weed suppression is obtainable.

Free access

J. Roger Harris, Jody Fanelli, and Paul Thrift

Description of early post-transplant root growth will help formulate best transplanting strategies for landscape trees. In this experiment, the dynamics of early root system regeneration of sugar maple (Acer saccharum Marsh. `Green Mountain') and northern red oak (Quercus rubra L.) were determined. Field-grown 4-year-old trees were transplanted bare-root into outdoor root observation containers (rhizotrons) in Oct. 1997, Nov. 1997, or Mar. 1998. All trees were grown in the rhizotrons until Oct. 1998 and then transplanted, with minimally disturbed rootballs, to field soil and grown for an additional two years. October-transplanted trees of both species began root regeneration earlier and regenerated more roots, as judged by accumulated root length on rhizotron windows, than Nov.- or March-transplanted trees. Median date for beginning root extension for sugar maples was 48, 22, and 0 days before budbreak for October-, November-, and Marchtransplanted trees, respectively. Median date for beginning root extension for northern red oak was 4, 21, and 14 days after budbreak for October-, November-, and Marchtransplanted trees, respectively. Height and trunk diameter growth were similar for all treatments within each species for 3 years after application of treatments. Early fall transplanting will result in earlier first season post-transplant root growth for sugar maple and northern red oak. Earlier post-transplant root growth will likely increase resistance to stress imposed by harsh landscape environments.

Free access

M.E. Valverde, P. Fallah Moghaddam, M.S. Zavala-Gallardo, J.K. Pataky, O. Paredes-Lopez, and W.L. Pedersen

Ear gall development was evaluated after inoculating sweet corn (Zea mays L.) hybrids with Ustilago maydis (DC) Corda by injecting sporidial suspensions into silk channels when silks had emerged ≈3 to 6 cm from ear shoots. Gall incidence was ≈35% in two inoculation trials. About 0.5% of the noninoculated control plants was infected. Gall weight increased ≈250% to 500% between 14 and 21 days after inoculation, reaching a maximum of ≈280 to 600 g. Gall tissue was nearly 100% black and had lost its spongy integrity 19 to 21 days after inoculation, when mycelial cells formed powdery teliospores. A 1- or 2-day harvest window during which huitlacoche yield and quality were optimized corresponded to the time at which 60% to 80% of the gall tissue was black. The optimal huitlacoche harvest time varied among hybrids from 17 to 19 days after inoculation, but we suspect that optimal harvest time varies from ≈15 to 24 days after inoculation, depending on the growth stage at which the host is inoculated and the environmental conditions following inoculation. Differences among sweet corn hybrids in gall incidence, gall size, and coverage of mature galls by husk leaves were observed and could be used to select sweet corn hybrids that are well suited for producing huitlacoche.

Free access

Eric D. Miltner, Gwen K. Stahnke, William J. Johnston, and Charles T. Golob

Late fall N fertilization of cool-season turfgrass in northern climates is a common practice. Previous research has been focused in climates where freezing temperatures prevail. Research in more moderate northern climates where turf may not go through winter dormancy is scarce. Four fertilizer N sources and an untreated control were applied in four different months (November, December, January, or February) to perennial ryegrass (Lolium perenne L.) in Puyallup, Wash., and to kentucky bluegrass (Poa pratensis L.) In Pullman, Wash., to compare their effects in moderate (Puyallup) and freezing (Pullman) winter climates. In Pullman, only November applications of ammonium sulfate (AmS) or polymer coated sulfur coated urea (PCSCU) enhanced winter turfgrass quality. In Puyallup, November or December application of AmS, PCSCU, or polymer coated urea (PCU) resulted in enhanced winter quality. Polymer coated urea yielded a delayed initial response and a longer residual effect in the spring. Isobutylidenediurea (IBDU) did not improve winter turf quality in either Pullman or Puyallup. Although there was no quality response following January fertilizer application, there was suppression of red thread [Laetisaria fuciformis (McAlpine) Burds.] symptoms in Puyallup, indicating N uptake. Late fall fertilizer N in eastern Washington should be confined to November, using soluble or more quickly available slow-release nitrogen fertilizers. The application window can be extended to December in western Washington, and more slowly available coated ureas can be effectively used.