Search Results

You are looking at 81 - 90 of 207 items for :

  • "relative growth rate" x
  • Refine by Access: All x
Clear All
Free access

Marc van Iersel

Salvia splendens `Top burgundy' was grown in pots of different sizes (5, 50, 150, and 450 mL) to assess the effect of rooting volume on the growth and development of salvia. Seeds were planted in a peat-lite growing medium and plants grown in a greenhouse during the winter and spring of 1996. Plants were spaced far enough apart to minimize mutual shading and interplant light competition. Plants were harvested at weekly intervals and shoot and root dry mass and leaf area were measured. Relative growth rate (RGR) and net assimilation rate were calculated from these data. Differences in plant size became evident at 25 days after seeding. A small pot size (5 mL) decreased root and shoot dry mass, RGR, and NAR, while increasing the root:shoot ratio. Differences between the pot sizes became more apparent during the course of the experiment. The observation that root: shoot ratio decreased with increasing pot volume suggests that the decreased plant size in smaller pots was not the direct effect of reduced root size. Growth most likely was limited by the ability of the roots to supply the shoots with sufficient water and/or nutrients. Pot volume did not only affect the growth, but also the development of the plants. Salvia flowered faster in bigger pots (about 50 days after seeding in 450-mL pots), while the plants in 5-mL cells did not flower during the 9-week period of the experiment.

Free access

J. R. Potter

A method was developed to rapidly screen genotypes for capacity of leaves to export photosynthate, with the expectation that rapid export should promote growth. Vegetative plants of 13 cultivars of Pisum sativum L. (pea) were screened based on changes in specific leaf weight (SLW) at dawn before and after exposing plants to CO2-enriched air (1200 ppm) for one diurnal cycle. Three cultivars (Nofila, Little Marvel, Sugar Daddy) had relatively little increase in SLW and were designated rapid exporters; based on this criterion `Alaska', `Oregon Sugar Pod II', and `Manoa' were slow exporters. The increase in SLW was due to starch and sugars. Neither single leaf net photosynthetic nor dark respiration rates consistently differed among cultivars when measured at 1200 or 350 ppm CO2 (normal air). The difference between rapid and slow exporters persisted after plants were grown for 2 weeks at 1200 vs. 350 ppm CO2. However, the relative growth rate (RGR) of whole-plant dry mass did not differ consistently among cultivars at either CO2 level, except it was high for `Alaska', a slow exporter. The high RGR for `Alaska' was due in part to a high ratio of whole plant leaf area to dry mass early in the growth period. Thus, although the rapid exporters accumulated relatively low levels of starch and sugars, this trait did not dominate other growth determining traits.

Free access

Yong-Zhan Ma and Martin P.N. Gent

How are C and N metabolites affected by a root-zone temperature (RZT) in phase or out of phase with the photoperiod? Tomato (Lycopersicon esculentum Mill.) was grown with an air temperature of 20C, and RZT that was in phase with a 12-h photoperiod, 28C in the light and 12C in the dark, or out of phase, 12C in the light and 28C in the dark. Seedlings were grown in flowing solution containing 200 μm NO3 and excess amount of other mineral elements. The flow rate increased with plant size. After 8 days, plants were harvested at the end of the day and at the end of the night. The relative growth rate (day–1) was slightly greater for in-phase (0.19) than out-of-phase RZT (0.17) and less than that at a constant air and RZT of 24C (0.22). RZT affected N accumulation and partitioning of C and N metabolites. Cool roots contained more NO3 and free sugars than warm roots. Leaves had less NO3 in the light than in the dark, and NO3 in leaves of plants with an out-of-phase RZT was depleted in the light. Concentration of free amino acids and protein was greater and the amount of starch was less in leaves of plants with in-phase RZT.

Free access

Ted M. DeJong

Previous research using relative growth rate models indicates that under normal cropping conditions peach fruit growth and yield is alternately source and sink limited during different phases of fruit growth. An experiment was designed to test this concept on whole trees in the field. Shortly after bloom central leader trees of `Spring Lady' and `Cal Red' peaches, were thinned to various crop loads ranging from -50 to -400 fruit per tree. At specific intervals trees representing the full range of crop loads were harvested to determine mean individual fruit weight/total crop weight relationships for whole trees. Then, assuming that fruit on low cropped trees grew at their maximum potential growth rate (sink demand) and that total crop growth on unthinned trees represented the maximum dry matter available for fruit growth (source supply), the relative source and sink limitation between each harvest interval was calculated. With `Cal Red', fruit growth appeared to be primarily source limited early and late in the season but primarily sink limited during the mid-period (Stage II) of fruit growth. At normal commercial crop loads, `Spring Lady' was less source limited than `Cal Red'.

Free access

Martin P.N. Gent

Nutrient availability may depend on method of fertilization particularly when the root medium is cool. The salad greens, arugula, lettuce, and spinach, were grown in spring, fall, and winter using organic or conventional fertilization to test this hypothesis. Field plots were mineral soil fertilized with 10N-10P-10K, or soil was amended with leaf compost and cotton-seed meal. Unheated high-tunnel plantings plots contained either perlite fertilized with a complete soluble fertilizer or a 1 leaf compost: 1 perlite mixture fertilized with cotton-seed meal. There was no consistent difference in growth due to the method of fertilization, either in the field or in high tunnels. Over all plantings in field and high-tunnel plots, concentrations of nitrogen and phosphorus were higher in leaves of plants grown with leaf compost. The time of year did not affect the difference in composition between plants grown in compost and perlite in a manner that could be related to the environment or rate of growth. Although relative growth rates were only 5% per day in high tunnels in winter compared to 10% to 18% per day in other seasons, the difference in reduced nitrogen among plants grown in compost and perlite was similar in winter and summer. The changes in composition due to method of fertilization were similar in all three plant species under study.

Free access

Douglas D. Archbold and Ann M. Clements

Several components of whole-plant growth were compared among accessions of Fragaria chiloensis (FC) and F. virginiana (FV) grown at 23 and 31 °C daytime temperatures. The accessions loosely represented North American (NA) and South American (SA) provenances of FC and Kentucky (KY) and eastern Canadian (CN) provenances of FV. Differences in component values between species and by provenance and accession within species were observed at each temperature. Using the ratio of the component value at 31 °C to that at 23 °C as a basis for comparisons, whole-plant relative growth rate (RGR), leaf net assimilation rate (NAR), root RGR, and root: shoot ratio were reduced relatively more by high temperature in FC than FV, while crown RGR, leaf RGR, and leaves produced per day were not consistently affected by temperature or and did not differed significantly between species. While the SA FC exhibited higher values for nearly all components than the NA FC at both temperatures, both were affected similarly by high temperature. The CN FV exhibited somewhat greater sensitivity to high temperature than the KY FV, with significantly lower leaf NAR, crown RGR, and leaves produced per day in the former group.

Free access

Riccardo Lo Bianco, Brunella Morandi, and Mark Rieger

Along with sucrose, sorbitol represents the major photosynthetic product and the main form of translocated carbon in peach. The objective of the present study was to determine whether in peach fruit, sorbitol and sucrose enzyme activities are source-regulated, and more specifically modulated by sorbitol or sucrose availability. In two separate trials, peach fruit relative growth rate (RGR), enzyme activities, and carbohydrates were measured 1) at cell division stage before and after girdling of the shoot subtending the fruit; and 2) on 14 shoots with different leaf to fruit ratio (L:F) at cell division and cell expansion stages. Fruit RGR and sorbitol dehydrogenase (SDH) activity were significantly reduced by girdling, whereas sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) where equally active in girdled and control fruits on the fourth day after girdling. All major carbohydrates (sorbitol, sucrose, glucose, fructose and starch) were reduced on the fourth day after girdling. SDH activity was the only enzyme activity proportional to L:F in both fruit developmental stages. Peach fruit incubation in sorbitol for 24 hours also resulted in SDH activities higher than those of fruits incubated in buffer and similar to those of freshly extracted samples. Overall, our data provide some evidence for regulation of sorbitol metabolism, but not sucrose metabolism, by photoassimilate availability in peach fruit. In particular, sorbitol translocated to the fruit may function as a signal for modulating SDH activity.

Free access

Jae-Woo Soh* and Yong-Beom Lee

Experiments were carried out to determine nutrient management system for butterhead lettuce `Omega' and leaf lettuce `Grand Rapids' in nutrient film technique (NFT), and to develop a rapid and reliable program for recirculation solution. The effects of controlling solutions with UOSL (Leaf Lettuce solution of the Univ. of Seoul, Korea; NO3 -N 10.55, NH4 -N 1.02, P 2.0, K 6.7, Ca 3.5, Mg 2.0, SO4 -S 2.0 me·L-1; Fe 2.0, Cu 0.1, B 0.5, Mn 0.3, Zn 0.3, Mo 0.05 ppm) were studied by greenhouse with managing by distilled water (DW), managing pH and EC (CM), managing by nutrient solution analysis (MN), managing by nutrient solution with leaf analysis (ML). The CO2 assimilation, transpiration rate, relative chlorophyll contents, leaf color, fresh weight and dry weight were highest in MN control in the butterhead `Omega' and in MN and ML control in the leaf lettuces `Grand Rapids'. The highest relative growth rate (RGR) was in MN ML in the butterhead `Omega' but those wasn't in the leaf lettuce `Grand Rapids'. Calculation program of adjustable solution was based on the main works by Visual Basic 5.0. The developed program could select an automatic and passive process considering the type of fertilizers, run-off rate, nutrient concentration, and water volume, for calculation. All of them were done successfully by the fast and precise calculation program.

Free access

Martin M. Williams II, Rick A. Boydston, and Adam S. Davis

Research in dent corn has found significant variation in crop/weed competition for light among hybrids. However, little has been published on the extent of variation in sweet corn competitive ability. Field studies were conducted under weed-free conditions to quantify canopy development and light environment among three sweet corn hybrids and to determine associations among canopy characteristics to crop yield. An early-season hybrid (Spirit) and two midseason hybrids (WHT2801 and GH2547) were grown at experimental sites located near Urbana, Ill., and Prosser, Wash., in 2004 and 2005. Maximum leaf area index (LAI) and intercepted photosynthetically active radiation (PAR) was typically highest for GH2547 and lowest for Spirit. Most differences in vertical LAI among hybrids was observed above 60 and 150 cm in Illinois and Washington, respectively, with WHT2801 and GH2547 having leaf area distributed higher in the canopy than Spirit. Both number and mass of marketable ears were positively correlated with maximum relative growth rate (correlation coefficients 0.60–0.81), leaf area duration (0.68–0.79), total LAI (0.56–0.74) at R1, and intercepted PAR (0.74–0.83) at R1. Differences in canopy properties and interception of solar radiation among Spirit, WHT2801, and GH2547 lead us to hypothesize that variation in weed-suppressive ability exists among hybrids. Future testing of this hypothesis will provide knowledge of interactions specific to sweet corn useful for developing improved weed management systems.

Free access

David M. Eissenstat, James H. Graham, James P. Syvertsen, and Diana L. Drouillard

The effects of phosphorus (P) and of the mycorrhizal (M) fungus, Glomus intraradix, on the carbon (C) economy of sour orange (citrus aurantium L.) were determined during and following active M colonization. There were four treatments: mycorrhizal seedlings grown at standard-strength P (M1) and nonmycorrhizal (NM) plants grown at 1, 2 and 5 times standard-strength P (NM1, NM2 and NM5). Mycorrhizal colonization, tissue dry mass, P content, root length, leaf area, 14C partitioning and rate of c assimilation (A) were determined in five whole-plant harvests from 6 to 15 wks of age. In contrast to the effects of P nutrition on C economy in sour orange, M effects were generally subtle. Mycorrhizae increased the root biomass fraction, the root length/leaf area ratio, and the percent of 14C recovered from belowground components. Mycorrhizal plants had a higher percentage of belowground 14C in the respiration and soil fractions than did NM plants of equivalent P status. Mycorrhizal plants tended to have enhanced A at 8 wks but not at 7 or 12 wks. This temporarily enhanced A of M plants did not fully compensate for their greater belowground C expenditure, as suggested by apparently lower relative growth rates of M than NM plants of equivalent P status. Problems of interpreting the dynamic effects of mycorrhizae on C economy that are independent of p nutrition are discussed.