Search Results

You are looking at 81 - 90 of 471 items for :

  • "nursery production" x
  • Refine by Access: All x
Clear All
Full access

Rolston St. Hilaire, Cathleen F. Feser, Theodore W. Sammis, and Anderson S. St. Hilaire

Accurate measurement of evapotranspiration (ET) is difficult and expensive for large, in-ground container (pot-in-pot) plants. We engineered and used a simple and inexpensive system to determine evapotranspiration of in-ground container trees. The system was shop-assembled and used a block and tackle system attached to a collapsible tripod. A unique container harness system attached to the block and tackle system was used to lift containers that were sunken in the ground. Containers were weighed with a battery-operated balance that was accurate to 1 g (0.04 oz) at its maximum load capacity of 60 kg (132.3 lb). One person operated the system, and the weight of the system exclusive of the balance was 17.5 kg (38.50 lb). Gravimetric water use data obtained with the system werecombined with meteorological data to compute crop coefficients (Kc) of mexican elder (Sambucus mexicana). The system detected small changes in daily water use of mexican elder trees grown in 76-L (20-gal) in-ground containers. Crop coefficients ranged from 0.17 to 0.71. The acquisition of evapotranspiration data from relatively large, containerized landscape plants may be facilitated because the system is simple, inexpensive, and accurate.

Free access

William K. Harris, Joyce G. Latimer, John F. Freeborn, Margaret Aiken, and Holly L. Scoggins

Despite the popularity of fountain grass (Pennisetum alopecuroides) as a landscape perennial, little research has been conducted on nursery management practices that maximize its overwintering survival and subsequent spring vigor in container production systems. An experiment was conducted to determine the effect of protective covers (a double layer of insulation fabric, a double layer of insulation fabric plus a single sheet of white polyethylene plastic, or no cover), fertilizer application rate (high and low), and substrate moisture content (irrigated when substrate volumetric water content (VWC) fell below 15% and 25%) on the survival rate and vigor of container-grown fountain grass: straight species fountain grass (SFG), ‘Hameln’ fountain grass (HFG), and ‘Little Bunny’ fountain grass (LBFG). Plants were overwintered in a coldframe and were evaluated for survival rate (percent that survived the winter) and vigor (visual rating scale 1 to 5) the following spring. Survival rate and vigor ratings varied among species. However, the highest survival rates (generally 75% or greater) and vigor ratings (generally 3 or greater) were in treatments that used protective covers, though there was not a clear advantage to using white polyethylene in addition to the double layer of insulation fabric. In treatments that used either of the protective covering methods and the high fertilizer application rate, 25% or less of LBFG survived and had vigor ratings of 1.3 or less. In contrast, 75% of LBFG survived when the low fertilizer rate was used in conjunction with either protective covering method. Substrate moisture content only affected the survival rates of SFG and HFG when no protective cover was used, although these survival rates were less than those with covers. These results suggest that protective covers may serve as a tool to minimize winter damage and improve crop quality for the species used in this trial. Because of the varied capacity among these cultivars to tolerate different fertilizer rates and substrate moisture contents, it is recommended that growers use the results of this study as a baseline for conducting site evaluations to determine overwintering techniques that maximize survival and vigor on their facilities.

Free access

Amanda Bayer, John Ruter, and Marc W. van Iersel

Sustainable use of water resources is of increasing importance in container plant production as a result of decreasing water availability and an increasing number of laws and regulations regarding nursery runoff. Soil moisture sensor-controlled, automated irrigation can be used to irrigate when substrate volumetric water content (θ) drops below a threshold, improving irrigation efficiency by applying water only as needed. We compared growth of two Gardenia jasminoides cultivars, slow-growing and challenging ‘Radicans’ and easier, fast-growing ‘August Beauty’, at various θ thresholds. Our objective was to determine how irrigation can be applied more efficiently without negatively affecting plant quality, allowing for cultivar-specific guidelines. Soil moisture sensor-controlled, automated irrigation was used to maintain θ thresholds of 0.20, 0.30, 0.40, or 0.50 m3·m−3. Growth of both cultivars was related to θ threshold, and patterns of growth were similar in both Watkinsville and Tifton, GA. High mortality was observed at the 0.20-m3·m−3 threshold with poor root establishment resulting from the low irrigation volume. Height, width, shoot dry weight, root dry weight, and leaf size were greater for the 0.40 and 0.50 m3·m−3 than the 0.20 and 0.30-m3·m−3 θ thresholds. Irrigation volume increased with increasing θ thresholds for both cultivars. For ‘August Beauty’, cumulative irrigation volume ranged from 0.96 to 63.21 L/plant in Tifton and 1.89 to 87.9 L/plant in Watkinsville. For ‘Radicans’, cumulative irrigation volume ranged from 1.32 to 126 L/plant in Tifton and from 1.38 to 261 L/plant in Watkinsville. There was a large irrigation volume difference between the 0.40 and 0.50-m3·m−3 θ thresholds with little additional growth, suggesting that the additional irrigation applied led to overirrigation and leaching. Bud and flower number of ‘Radicans’ were greatest for the 0.40-m3·m−3 θ threshold, indicating that overirrigation can reduce flowering. The results of this study show that growth of the different G. jasminoides cultivars responded similarly to θ threshold at both locations. Similarities in growth and differences in irrigation volume at the 0.40 and 0.50-m3·m−3 θ thresholds show that more efficient irrigation can be used without negatively impacting growth.

Free access

Suzanne E. Allaire, Jean Caron, Isabelle Duchesne, Léon-Étienne Parent, and Jacques-André Rioux

A 2-year experiment with Prunus ×cistena sp. was conducted in pots using seven substrates composed of various proportions of primarily peat, compost and bark. Peat substrates significantly affected root and shoot dry weight. Water desorption characteristics and saturated hydraulic conductivity were measured in situ to estimate the pore tortuosity factor and the relative gas diffusion coefficient. The pH, electrical conductivity, C/N ratio, total and hydrolyzable N, as well as NO3 --N and NH4 +-N in solution were also measured. Estimates of the physical properties suggest that a lack of aeration limited plant growth. Plant growth was significantly correlated with both the gas relative diffusivity and the pore tortuosity factor. Among the chemical factors, pH and soil nitrate level were also correlated with plant growth. No significant correlation was found between plant growth and air-filled porosity or any other measured chemical properties. This study indicates that an index of gas-exchange dynamics could be a useful complementary diagnostic tool to guide substrate manufacturing.

Free access

Calvin Chong, R.A. Cline, and D.L. Rinker

Four deciduous ornamental shrubs [`Coral Beauty' cotoneaster (Cotoneaster dammeri C.K. Schneid); Tartarian dogwood (Cornus alba L.); `Lynwood' forsythia (Forsythia × intermedia Zab.); `Variegata' weigela (Weigela florida Bunge A.D.C.)] were grown in trickle-fertigated containers. There were eight media consisting of 25% or 50% sphagnum peat or composted pine bark, 25% sand, and the remainder one of two sources of spent mushroom compost; four media with 509″ peat or bark mixed with 50% spent mushroom compost; and a control medium of 10070 pine bark. Initially, higher than desirable salt levels in all compost-amended media were leached quickly (within 2 weeks of planting) and not detrimental to the species tested. Unlike cotoneaster, which showed no difference in growth (shoot dry weight) due to medium, dogwood, forsythia, and weigela grew significantly better in all compost-amended media than in the control. Growth of these three species was 20% greater in peat-based than in bark-based, compost-amended media. Dogwood and forsythia grew slightly more (+8%) with spent mushroom compost based primarily on straw-bedded horse manure than with one based on a blend of straw-bedded horse manure, wheat straw, and hay. The addition of sand (25%) to a mixture of 50% peat or bark and 25 % spent compost produced a medium with minimal compaction.

Free access

Amanda Bayer, Imran Mahbub, Matthew Chappell, John Ruter, and Marc W. van Iersel

Efficient water use is becoming increasingly important for horticultural operations to satisfy regulations regarding runoff along with adapting to the decreasing availability of water to agriculture. Generally, best management practices (BMPs) are used to conserve water. However, BMPs do not account for water requirements of plants. Soil moisture sensors can be used along with an automated irrigation system to irrigate when substrate volumetric water content (θ) drops below a set threshold, allowing for precise irrigation control and improved water conservation compared with traditional irrigation practices. The objective of this research was to quantify growth of Hibiscus acetosella ‘Panama Red’ (PP#20,121) in response to various θ thresholds. Experiments were performed in a greenhouse in Athens, GA, and on outdoor nursery pads in Watkinsville and Tifton, GA. Soil moisture sensors were used to maintain θ above specific thresholds (0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45 m3·m−3). Shoot dry weight increased from 7.3 to 58.8 g, 8.0 to 50.6 g, and from 3.9 to 35.9 g with increasing θ thresholds from 0.10 to 0.45 m3·m−3 in the greenhouse, Watkinsville, and Tifton studies, respectively. Plant height also increased with increasing θ threshold in all studies. Total irrigation volume increased with increasing θ threshold from 1.9 to 41.6 L/plant, 0.06 to 23.0 L/plant, and 0.24 to 33.6 L/plant for the greenhouse, Watkinsville, and Tifton studies, respectively. Daily light integral (DLI) was found to be the most important factor influencing daily water use (DWU) in the greenhouse study; DWU was also found to be low on days with low DLI in nursery studies. In all studies, increased irrigation volume led to increased growth; however, water use efficiency (grams of shoot dry weight produced per liters of water used) decreased for θ thresholds above 0.35 m3·m−3. Results from the greenhouse and nursery studies indicate that sensor-controlled irrigation is feasible and that θ thresholds can be adjusted to control plant growth.

Free access

Arleen Godoy and Janet C. Cole

Commercially propagated `Halward's Silver' spirea (Spiraea nipponica Maxim.) bareroot cuttings and cuttings with substrate around the roots (plugs) were transplanted into 3.8-L containers and fertilized with various P fertilizers to determine the effect of fertilizer source on P leaching and plant growth. The following fertilizer treatments were applied: 1) 100% of the recommended rate of P from controlled-release fertilizer (CRF), consisting of 22N-2.6P-10K; 2) 100% of P from triple superphosphate (TSP, 0N-20P-0K) with N and K provided by 22N-0P-10K CRF; and 3) 50% of P from CRF, consisting of 22N-1.3P-10K, plus 50% of P from TSP (CRF/TSP). The most P leached from cuttings transplanted as plugs or bareroot and fertilized with TSP, while the least P leached from cuttings transplanted as plugs and fertilized with CRF or CRF/TSP. Plants fertilized with CRF/TSP generally had larger root dry weights than did plants fertilized with CRF or TSP. Plants fertilized with CRF had the smallest stem dry weights. Shoot-to-root (S/R) ratio was largest in plants transplanted as plugs in substrate amended with TSP, but cuttings transplanted bareroot into CRF-amended substrate had the highest S/R ratio and the lowest stem P concentration. Incorporation of CRF/TSP into the container substrate can reduce P leaching compared with incorporation of TSP, and can increase root and stem dry weights of plants transplanted as plugs compared with incorporation of CRF.

Free access

Ursula K. Schuch and David W. Burger

Twelve species of woody ornamentals were grown in containers in Riverside and Davis, Calif., to determine plant water use and compare crop coefficients (Kc) calculated with reference evapotranspiration (ET) from local weather stations (ETcim) or atmometers (ETatm). Water use, Kcatm, and Kccim differed by species, location, and month of the year. Raphiolepis indica (L.) Lindl., Pittosporum tobira (Thunb.) Ait., Juniperus sabina L., and Photinia ×fraseri Dress. were the highest water users in Riverside and Arctostaphylos densiflora M.S. Bak., Juniperus, Cercis occidentalis Torr., and Pittosporum used the highest amount of water in Davis, when averaged over the 20-month study period. Rhamnus californica Eschsch., Prunus ilicifolia (Nutt.) Walp., and Cercocarpus minutiflorus Abrams. were among the lowest water users in both locations. Although plant water use fluctuated considerably between individual sampling dates, the relative ranking of species water use in each location changed very little over the study period. During periods of high winds, ETcim may not provide an accurate reference for container crops. Kc values fluctuated seasonally from as much as 1 to 4.7 for high water users, while values were stable for low water users and also for Buxus microphylla japonica Rehd. & E.H. Wils., an intermediate water user. During periods of low ET, especially in fall and winter, Kc values were artificially high and failed to correspond to the plants' low water use. Kc values for low water users seem to be useful to estimate water requirements over an extended period of time, whereas general Kc values seem to have limited value for plants with high water demand and need to be modified for different growth stages and growing locations.

Free access

Thomas G. Ranney and Everett P. Whitman II

A 3-year study was conducted to evaluate growth and survival of trees grafted onto five species of birch rootstocks. `Whitespire' Japanese birch (Betula platyphylla var. japonica Hara.) was grafted onto paper birch (B. papyrifera Marsh), European birch (B. pendula Roth), river birch (B. nigra L.), Szechuan birch [B. szechuanica (C. Schneid.) Janson], and `Whitespire' Japanese birch rootstocks and grown under field conditions. Trees grafted onto river, European, paper, and `Whitespire' birch rootstocks had similar (100% to 60%) survival rates. Trees on Szechuan rootstock had a survival rate of 30%, which was lower than that of all other rootstocks, except `Whitespire'. `Whitespire' scions grafted onto European birch rootstocks had thicker trunks, were higher, and had wider canopies than trees grafted onto `Whitespire' rootstocks. Trees on river birch rootstocks also had thicker trunks but similar tree heights and canopy widths as trees grafted onto `Whitespire'. `Whitespire' Japanese birch rootstocks produced more rootstock suckers than any of the other rootstocks, while trees on river birch rootstocks had the most frost cracks. No signs of graft incompatibility were observed for any of the graft combinations. These results demonstrate that growth of `Whitespire' birch can be enhanced by grafting this cultivar on rootstocks of other species, including European and river birch.

Free access

Elisha O. Gogo, Mwanarusi Saidi, Francis M. Itulya, Thibaud Martin, and Mathieu Ngouajio

Unfavorable environmental conditions, pests, and viral diseases are among the major factors that contribute to poor growth and quality of tomato (Solanum lycopersicum) seedlings in tropical areas. Improving crop microclimate and excluding insects that transmit viruses may improve transplant quality and yield in production fields. This study was carried out in two seasons at the Horticulture Research and Teaching Field of Egerton University in Njoro, Kenya, to investigate the effects of agricultural nets herein called eco-friendly nets (EFNs) on germination and performance of tomato seedlings. Tomato seeds were either raised in the open or under a permanent fine mesh net (0.4-mm pore diameter). Eco-friendly net covers modified the microclimate resulting in significantly higher day temperatures and relative humidity, compared with the open treatment. Nets increased temperature and relative humidity by 14.8% and 10.4%, respectively. Starting seeds under a net advanced seedling emergence by 2 days and resulted in higher emergence percentage, thicker stem diameter, more leaves, and faster growth leading to early maturity of seedlings and readiness for transplanting. Netting improved root development by increasing root quantity and length. Stomatal conductance (g S) and estimates of chlorophyll content were higher in seedlings under net covering compared with those in the noncovered control treatment. Insect pests and diseases were also reduced under net covering. The use of the net in the production of tomato transplants presented a 36.5% reduction in the cost of seeds, through improved emergence and reduced pest damage. All other factors held constant, healthy and quality transplants obtained under a net covering also translate into better field performance; hence, increasing economic returns for commercial transplants growers, as well as for tomato farmers. Results of this study suggest that EFNs can be customized not only for their effective improvement on growth and quality of tomato transplants but also for their pest and disease management in the nursery alone or as a component of integrated pest and disease management.