Search Results

You are looking at 81 - 90 of 658 items for :

  • "meristems" x
  • Refine by Access: All x
Clear All
Free access

James A. Bryan and John R. Seiler

Foliar application of the synthetic growth regulator BA was evaluated for increasing the duration and extent of Fraser fir [Abies fraseri (Pursh.) Poir.] seedling growth. Aqueous solutions of 0, 222, or 444 μm BA (0, 50, or 100 ppm) were sprayed on the shoots of Fraser fir seedlings biweekly from 18 until 38 weeks after planting. Foliar sprays of 444 μm BA increased seedling height 19%, increased shoot weight 57%, reduced root weight 22%, and increased total weight 27%. Apical meristem activity was stimulated and the long periods of dormancy typical of Fraser fir seedlings were avoided. Chemical name used: 6-benzylaminopurine (BA).

Free access

Merle M. Millard, Dehua Liu, Michael J. Line, and Miklos Faust

Magnetic resonance imaging estimates unreasonably high T2 times when creating T2 images in woody plants when tissues contain a limited amount of water. We developed a system to correct such images. Tissue distribution of proton density and states of water were determined by creating images of proton density and T2 relaxation times in summerdormant (paradormant) apple (Malus domestica Borkh.) buds. These images reveal that the proton density and water states obviously are not distributed uniformly in the bud and stem; but, the distribution of water depends greatly on the tissue type (bark, xylem, or meristem of the stem), and there are differences in the states of water even within the same tissue. At low proton density T2, calculated relaxation times were unreasonably high in tissues, with the exception of meristem of the shoot. In buds that were induced to grow and in which proton density was higher, T2 times appeared as expected. Variance of T2 times in tissues containing little water was 50 times higher than in those with a higher water content. Data with such high variance were excluded from the images; thus, the image was “corrected.” Corrected images of T2 times fit the distribution of water indicated by the proton density images well.

Free access

Richard L. Harkess and Robert E. Lyons

Histological and histochemical examination of floral initiation was conducted to determine the pattern of flowering in Rudbeckia hirta, a long-day (LD) plant. Plants were grown under 8-hour short days (SDs) until they had 14 to 16 expanded leaves. Half of the group of plants was moved to LD conditions consisting of natural daylength plus a 4-hour night interruption. Rudbeckia hirta had a pattern of differentiation in flowering similar to that reported in species requiring one inductive day for initiation. Rudbeckia hirta required 8 LDs for evocation and 18 LDs for completion of initiation. Involucral bracts initiated after 18 LDs, after which the receptacle enlarged and was capped by a meristematic mantle of cells signaling the start of development. Floret primordia did not initiate, even after 20 LDs. Increases in pyronin staining were observed in actively dividing cells of the procambium, leaf primordium, and corpus of the vegetative meristems. After 8 LDs, the pith rib meristem stained darkly, a result indicating the arrival of the floral stimulus. An increase in pyronin staining was also observed in the meristematic mantle covering the receptacle after 18 LDs, a result indicating increased RNA levels.

Free access

Melita M. Biela, Gail R. Nonnecke, William R. Graves, and Harry T. Horner

Temperature, as a potential environmental stressor, interacts with photoperiod in floral initiation of June-bearing strawberries (Fragaria ×ananassa), such that high-temperature exposure can result in poor floral initiation. Our objectives were to examine the effects of various durations of high root-zone temperature on floral initiation and development and on vegetative growth and development. In a 1998 greenhouse experiment, hydroponically grown `Allstar' June-bearing strawberry plants were subjected day/night temperatures of 31/21 °C in the root zone for one, two, or three continuous periods (of ≈7 days), followed by exposure to 17 °C for the duration of the experiment. Control plants were raised at 17 °C in the root zone throughout the experiment. An additional temperature treatment was exposure to 31/21 °C in the root zone for two periods, each followed by a period at 17 °C. Plants were arranged in a randomized complete-block design with factorial treatments of duration of high root-zone temperature and harvest time. At the end of each period, plants were harvested and the apical meristems dissected for microscopic evaluation of vegetative and floral meristems and the stage of development of the primary flower. We observed floral initiation in all treatments after photoperiodic induction. However, exposure to 31/21 °C in the root zone during key periods of floral initiation in June-bearing strawberry may alter floral development.

Free access

Kalavathy Padmanabhan, Daniel J. Cantliffe, Roy C. Harrell, and Dennis B. McConnell

A comparison of external morphology captured via a computer vision system and a study of internal anatomy of sweetpotato somatic embryos identified five different major morphological variants among torpedo and cotyledonary stage embryos. These included 1) Perfect Type, 2) Near Perfect Type, 3) Limited/No Meristematic Activity Type, 4) Disrupted Internal Anatomy Type, 5) Proliferating Type. Perfect and Near Perfect types of somatic embryos were categorized as competent, while Limited/No Meristematic activity, Disrupted Internal Anatomy, and Proliferating types were categorized as noncompetent with respect to their conversion ability. Lack of organized shoot development in somatic embryos of sweetpotato was attributed to the following abnormalities: 1) lack of an organized apical meristem, 2) sparsity of dividing cells in the apical region, 3) flattened apical meristem, 4) multiple meristemoids and/or diffuse meristematic activity throughout the embryo. A morphological fate map of most of the torpedo and cotyledonary embryo variants was identified, which will be beneficial in synthetic seeding and transgenic research and development of sweetpotato.

Free access

Amalia Barzilay, Hanita Zemah, Rina Kamenetsky, and Itzhak Ran

The life cycle and morphogenesis of the floral shoot of Paeonia lactiflora Pallas cv. Sarah Bernhardt were studied under Israeli conditions. The renewal buds for the following year originate on the underground crown, at the base of the annual stems. Bud emergence begins in early spring. Stems elongate rapidly and reach heights of 50-70 cm in 60-70 days. Flowering begins in April and continues until the end of May. After flowering, the leafy stems remain green until September-October, when the leaves senesce, and the peony plant enters the “rest” stage for 3-4 months. The new monocarpic shoot initiated in the renewal bud at the end of June with the formation of the first leaf primordia and continued to increase in size until February. During summer, the renewal buds remain vegetative. The apical meristem ceases leaf formation after senescence of the aboveground shoots in the fall. During September, the apical meristem of the renewal buds reaches the generative stage and achieves the form of a dome, but remains undifferentiated. In October, floral parts become visible. Floral differentiation is terminated at the beginning of December. Floral initiation and differentiation of peony do not require low temperatures. Morphological development and florogenesis were similar to other geophyte species with an annual thermoperiodic life cycle.

Free access

Leigh E. Towill and Philip L. Forsline

The dormant vegetative bud method for cryopreservation has been successfully applied to many lines of apple. We examined this method for five cultivars (Kentish, Montmorency, Meteor, North Star, Schatten Morelle) of sour cherry (Prunus cerasus L.) with the aim of developing long-term storage at NSSL. Singlebud nodal sections (35 cm) were desiccated to 25%, 30%, or 35% moisture before cooling at 1°C/hour to –30°C and holding for 24 hours. Sections were then directly placed in storage in the vapor phase above liquid nitrogen (about – 160°C). Warmed samples were rehydrated and patch budded at Geneva to assess viability. Sections that were either undried, dried but unfrozen, or dried and cooled to –30°C survived very well. For samples then cooled to –160°C, highest viabilities for each line occurred with the 25% moisture level, although fairly high viabilities also were observed at 30% and 35% moistures. Cryopreserved buds from four lines directly developed into a single shoot; buds from Montmorency formed a shoot from a lateral within the bud, suggesting that the terminal meristem died but that axillary meristems within the bud survived and formed a shoot or multiple shoots. Nineteen lines were harvested in January 1996 for long term storage of sour cherry germplasm under cryogenic conditions.

Free access

Beth Ann A. Workmaster, Jiwan P. Palta, and Jonathan D. Smith

In Wisconsin, the cranberry plant (Vaccinium macrocarpon Ait.) is protected from freezing temperatures by flooding and sprinkle irrigation. Due to the high value of the crop, growers typically overprotect by taking action at relatively warm temperatures. Our goal is to provide recommendations for improved frost protection strategies by studying seasonal hardiness changes in different parts of the cranberry plant (leaves, stems, buds, flowers, fruit). Stages of bud growth were defined and utilized in the hardiness determinations. Samples were collected from mid-April to mid-Oct. 1996 and cuttings were subjected to a series of freezing temperatures in a circulating glycol bath. Damage to plant parts was assessed by visual scoring and observation, ion leakage, and evaluation of the capability to regrow. The following results were obtained: 1) Overwintering structures, such as leaves, stems, and buds, can survive temperatures <–18°C in early spring, and then deacclimate to hardinesses between 0 and –2°C by late spring. 2) In the terminal bud floral meristems are much more sensitive to freeze–thaw stress than are the vegetative meristems. 3) Deacclimation of various plant parts occurred within 1 week, when minimum canopy temperatures were above 0°C, and when the most numerous bud stage collected stayed the same (bud swell). 4) Fruits >75% blush can survive temperatures of –5°C for short durations. By collecting environmental data from the same location we are attempting to relate plant development, frost hardiness, and canopy temperatures (heat units).

Free access

Miki Nakata, Nobuo Sugiyama, and Tanachai Pankasemsuk

The structure and developmental patterns of inflorescence of longan (Dimocarpus longan Lour.) were studied microscopically and by the naked eye. In inflorescence of longan, compound dichasia are arranged on three to four orders of monopodial axes without the formation of terminal flowers, indicating that longan inflorescence is pleiothyrse; cymose partial inflorescences are arranged on more than two monopodial axes. Most of the monopodial axes had differentiated by the end of November just before the cool season. The first sign of inflorescence formation was the appearance of bract primordia at apical meristems of the preformed monopodial axes, with lateral axes preceding the main axes. Dichasia were formed in the axils of bract primordia, and the formation of bracts and dichasia continued. Bract appearance can be detected by the naked eye 1 week after microscopically detected bract appearance. Shoots with intermediate characteristics between the inflorescence and the vegetative shoots were formed; dichasia were formed on the lateral axes, but not on the main axes in intermediate shoots. These results suggest that apical meristems on the terminal shoot produce monopodial axes, together with foliage leaf primordia, before floral induction, but produce bract primordia and compound dichasia, which are composed of sympodial axes, after floral induction.

Free access

Jeffrey A. Adkins and Michael A. Dirr

Floral induction of 10 Hydrangea macrophylla (Thunb.) Ser. cultivars (`All Summer Beauty', `Dooley', `Endless Summer', `Générale Vicomtesse de Vibraye', `Lilacina', `Mariesii Variegata', `Mme. Emile Mouillère', `Nikko Blue', `Penny Mac', and `Veitchii') was evaluated to determine the remontant flowering potential. Cultivars exhibiting superior flowering potential could facilitate year-round production of florist s hydrangea and expand the geographic adaptation of hydrangeas in the landscape. Plants were tested under either 8-hour inductive short-day (SD) or 24-hour noninductive extended-day (ED) photoperiods at 24 ± 2 °C. Floral induction of H. macrophylla occurred under both SD and ED but was more rapid under SD than under ED. Shoot length and total number of nodes were significantly different for cultivars, photoperiods, and harvest dates. Significant differences in the floral initiation and development were observed among cultivars. `Penny Mac', `Endless Summer', `Lilacina', `Mme. Emile Mouillère', and `Nikko Blue' displayed significantly greater floral meristem development under SD than all other cultivars. Over the nine-week period, only `Dooley', `Endless Summer', and `Penny Mac' floral development was affected significantly greater by SD photoperiods than ED photoperiods. All others cultivars showed similar floral development under SD and ED. Stage of meristem development was highly correlated with number of nodes, but not with shoot length.