Search Results

You are looking at 81 - 90 of 487 items for :

  • Refine by Access: All x
Clear All
Free access

Masaki Yahata, Hisato Kunitake, Kiichi Yasuda, Kensuke Yamashita, Haruki Komatsu, and Ryoji Matsumoto

manuscript. The authors thank Mr. Yasuhiro Okuno for kindly providing the experimental materials. This research was supported by Diet and Cancer Prevention: Exploring Research Technology, Miyazaki Prefecture Collaboration of Regional Entities for the

Free access

Masaki Yahata, Seiichi Harusaki, Haruki Komatsu, Kayo Takami, Hisato Kunitake, Tsutomu Yabuya, Kensuke Yamashita, and Pichit Toolapong

Research Center, for kindly providing `Banpeiyu' pummelo and `Ruby Red' grapefruit. This research was supported by Diet and Cancer Prevention: Exploring Research Technology, Miyazaki Prefecture Collaboration of Regional Entities for the Advancement of

Full access

I.L. Goldman

Plants are the foundation for a significant part of human medicine and for many of the most widely used drugs designed to prevent, treat, and cure disease. Folkloric information concerning traditional remedies for disease has had inestimable value in establishing familial and cultural linkages. During the 20th century, modern medical science in the U.S. and other developed countries ushered in a new era focused on synthetic medicines. Even though many of these compounds were based on natural compounds found in plants, the drive towards synthetic pharmaceuticals created a knowledge gap concerning the health functionality of plants, crops, and food. Paralleling this development, biochemists and nutritional scientists pioneered the discovery of vitamins during the early decades of the 20th century. This research paved the way for dietary guidelines based on empirical data collected from animal feeding trials and set the stage for the current emphasis on phytonutrients. Three primary stages characterize the use of fruits and vegetable in human health. The first stage concerns the observation that many fruit and vegetable crops were originally domesticated for their medicinal properties. Making their way into the diet for this purpose, fruit and vegetable crops remained on the fringe from a culinary point of view. The second stage began when the role of vitamins became more widely understood, and fruit and vegetable plants were quickly recognized as a rich source of certain vitamins, minerals, and fiber. At this point, they became more than just an afterthought in the diet of most U.S. citizens. Cartoon icons such as Popeye made the case for the health functionality of leafy greens, while parents schooled their children on the virtues of carrots (Daucus carota), broccoli (Brassica oleracea), and green beans (Phaseolus vulgaris). This renaissance resulted in large increases in fresh fruit and vegetable consumption across the country, a trend that continues to this day. The third phase can be characterized by the recognition that fruit and vegetable crops contain compounds that have the potential to influence health beyond nutritional value. These so-called functional foods figure prominently in the dietary recommendations developed during the last decades of the 20th century. In recent years, surveys suggest nearly two-thirds of grocery shoppers purchase food specifically to reduce the risk of, or manage a specific health condition. Evidence abounds that consumers, including Baby Boomers, choose foods for specific health benefits, such as the antioxidant potential of vegetables, suggesting high levels of nutritional literacy. Clinical and in vitro data have, to some degree, supported the claims that certain foods have the potential to deter disease, however much research remains to be conducted in order to definitively answer specific dietary-based questions about food and health.

Free access

Winand K. Hock

One of the major misconceptions in contemporary society is the widespread belief that our food supply is unsafe. The public's perception of risk is quite different than scientific assessment of risk. While scientists see microbial contamination as the key issue (100 to 10,000X greater risk than from exposure to pesticide residues), consumers appear to be most concerned about the effects of synthetic pesticides and fertilizers in the food they buy. Consumers equate “synthetic” with harmful or bad and “natural” with safe or good, yet they ignore the fact that 99.9% of all pesticides humans are exposed to are naturally occurring. Americans eat approximately 1.5 g. of natural pesticides per person per day, or about 10,000 times more than synthetic pesticide residues. Although few plant toxins have been tested for carcinogenicity so far, of those tested about half are rodent carcinogens. Contrary to public perception, environmental pollution accounts for only 2% of all cancers. By contrast, smoking, diet and other personal lifestyle choices account for more than 75%.

Free access

Daniel F. Warnock, David W. Davis, and William D. Hutchison

European corn borer, Ostrinia nubilalis Hübner, can severely affect sweet corn quality. Selection techniques in field experiments have improved ear feeding resistance associated with morphological features and/or allelochemicals. The isolation and identification of allelochemicals that detrimentally affect O. nubilalismay improve breeder selection for host plant resistance, thus reducing the need for insecticide application. A laboratory bioassay was used to detect chemical resistance factors in silk and kernel tissues of 10 variously resistant sweet corn genotypes. Ground lyophilized tissue from field-grown plants was added to a nutritionally complete larval diet before infestation with O. nubilalis neonates. Larval weights on a 10-day basis and time to pupation were recorded to estimate larval development. Tissue and genotype main effects affected (P ≤ 0.05) 10-day larval weight and time to pupation. Silk tissue (P ≤ 0.05) reduced 10-day larval weight and increased the time to pupation compared with kernel tissue and the cellulose control, which did not differ. Silk tissue reduced larval weight by 65% and increased time to pupation by 4.0 days compared with the cellulose control. Genotypes variously affected (P ≤ 0.05) larval growth and development, reducing 10-day larval weight up to 51% and increasing the time to pupation up to 4.2 days when comparing the best genotype for each developmental stage with the cellulose control. Silk tissue of some genotypes may contain allelochemicals that decrease the rate of larval growth and development. The status of allelochemical detection in silk tissue will be discussed.

Free access

Melinda McVey McCluskey

Students are often unable to relate the vegetables and fruits consumed as a snack or part of a meal to the plant parts discussed in botany class. Therefore, an exercise was developed for an introductory horticulture course to increase a student's awareness of botany in everyday life. Fresh produce was brought in from local gardens, grocery stores, or farmers markets. Vegetables and fruits were selected that are consumed for their roots, stems, leaves, flower, fruit, and seeds. As each vegetable or fruit was introduced, students named the plant and plant part. As each part was identified it was “dissected” to show the taxonomic features. The different fruit types, i.e., berry, hesperidium, pepo, drupe, and pome were explained. Students were encouraged to taste all vegetables and fruits as they were prepared. Most students sampled the produce as it was passed around the group. Students easily recognized much of the produce, i.e., carrots, asparagus, tomatoes, peas, oranges, and broccoli. The second part of the exercise exposed students to vegetables and fruits that were unfamiliar. Most of the students had little exposure to the more exotic fruits and vegetables that are now available. New vegetables and fruits that students said they would add to their diet include jicama, pomegranate, and star fruit.

Free access

Mark G. Lefsrud and Dean A. Kopsell

Plant growing systems have consistently utilized the standard Earth day as the radiation cycle for plant growth. However, the radiation cycle can easily be controlled by using automated systems to regulate the exact amount of time plants are exposed to irradiation (and darkness). This experiment investigated the influence of different radiation cycles on plant growth, chlorophyll and carotenoid pigment accumulation in kale (Brassica oleracea L. var. acephala D.C). Kale plants were grown in growth chambers in nutrient solution culture under radiation cycle treatments of 2, 12, 24, and 48 h, with 50% irradiance and 50% darkness during each time period. Total irradiation throughout the experiment was the same for each treatment. Radiation cycle treatments significantly affected kale fresh mass, dry mass, chlorophyll a and b, lutein, and beta-carotene. Maximum fresh mass occurred under the 2-h radiation cycle treatment. The maximum dry mass occurred under the 12-h radiation cycle treatment, which coincided with the maximum accumulation of lutein, beta-carotene, and chlorophyll a, expressed on a fresh mass basis. The minimum fresh mass occurred during the 24 h radiation cycle treatment, which coincided with the largest chlorophyll b accumulation. Increased levels of chlorophyll, lutein and beta-carotene were not required to achieve maximum fresh mass production. Environmental manipulation of carotenoid production in kale is possible. Increases in carotenoid concentrations would be expected to increase their nutritional contribution to the diet.

Free access

Dean A. Kopsell, William M. Randle, and Harry A. Mills

Brassica species are important economic vegetable crop, and it is possible to enrich them with selenium (Se) to supplement human diets. The health benefits associated with increased Se consumption include cancer suppression, reduced heart disease, and immune system enhancement. Vegetables enriched with Se can serve as excellent delivery systems of organic Se forms, which are more beneficial than traditional Se supplements. The vegetable Brassicas are consumed not only for their flavor, but also for their nutritional content. A heterogeneous population of rapid-cycling B. oleracea was used as a model system to study the effects of added selenate-Se on other plant micro- and macronutrients. Plants were grown in nutrient solutions amended with sodium selenate at 0.0, 3.0, 6.0, and 9.0 mg·L–1. Leaf tissues were then analyzed for nutrient content. Boron (P = 0.001) and iron (P = 0.01) content decreased, while selenium (P = 0.001), sulfur (P = 0.001), and potassium (P = 0.001) increased with increasing selenate-Se. Significant quadratic responses were found for calcium (P = 0.02), copper (P = 0.05), magnesium (P = 0.01), and molybdenum (P = 0.01). No differences in leaf fresh or dry weight were detected. Changes in plant nutrient content can be expected when Brassicas are enhanced for delivery of beneficial organic Se.

Free access

Mark G. Lefsrud and Dean A. Kopsell

Chlorophyll and carotenoid pigments were measured with high-performance liquid chromatography (HPLC) during leaf development in kale (Brassicaoleracea L. var. acephala D.C). Lutein and β-carotene are two plant-derived carotenoids that possess important human health properties. Diets high in these carotenoids are associated with a reduced risk of cancer, cataracts, and age-related macular degeneration. Kale plants were growth-chamber grown in nutrient solution culture at 20 °C under 500 μmol·m-2·s-1 of irradiance. Pigments were measured in young (<1 week), immature (1-2 weeks), mature (2-3 weeks), fully developed (3-4 weeks) and senescing (>4 weeks) leaves. Significant differences were measured for all four pigments during leaf development. Accumulation of the pigments followed a quadratic trend, with maximum accumulation occurring between the first and third week of leaf age. The highest concentrations of lutein were recorded in 1- to 2-week-old leaves at 15.1 mg per 100 g fresh weight. The remaining pigments reached maximum levels at 2-3 weeks, with β-carotene at 11.6 mg per 100 g, chlorophyll a at 251.4 mg per 100 g, and chlorophyll b at 56.9 mg per 100 g fresh weight. Identifying changes in carotenoid and chlorophyll accumulation over developmental stages in leaf tissues is applicable to “baby” leafy greens and traditional production practices for fresh markets.

Free access

Prem Nath

The world produces adequate food for everyone, but unequal distribution has created a gap between the countries that produce more food than they consume and those countries with deficit production. About 815 million people suffer from hunger and malnutrition, mostly in the developing world. By 2020, the developing world is expected to face the overwhelming challenge of a 97.5% increase in population; moreover, developing countries will face serious challenges with the trend of a major shift in population from rural to urban areas, where 52% of the people will live in megacities—all asking for more food, land, and infrastructure. According to the World Health Organization, an estimated 334 million children in developing countries are malnourished. In 2020, one out of every four children in these countries will still be malnourished. It is recognized that modern agriculture must diversify production and achieve sustainable higher output to supplement food security. In order to reduce pressure on cereals as well as to improve human nutrition through the consumption of other nutritious crops, diversification in cropping patterns can provide better options. The increased production and consumption of fruits and vegetables, with their wide adaptation and providers of important nutrients (especially vitamins and minerals), offer promise for the future. Fruits and vegetables as food and diet supplements are gaining momentum in most countries. In addition, recent experimental evidence has shown the growing importance of fruits and vegetables in the prevention of noncommunicable diseases. Further, horticulture would play an important role in urban and peri-urban agriculture and development.