Search Results

You are looking at 81 - 90 of 326 items for :

  • "cranberry" x
  • Refine by Access: All x
Clear All
Free access

Carolyn DeMoranville

Productivity in cranberry plots receiving either fish hydrolysate fertilizer or inorganic soluble fertilizer at the same dose has been studied for the past three seasons. In the past two seasons, fish hydrolysate fertilizer (produced from cod frames and stabilized with phosphoric acid) has been used experimentally on a commercial scale. Both series of experiments lead to the conclusion that fish hydrolysate is an acceptable alternative to soluble fertilizer for cranberries. In fact, fish hydrolysate will be included in the University fertilizer guidelines for cranberries to be issued in the spring of 1990. The evidence will be presented along with the arguments in favor of the use of this organic-type material. Continuing lines of research which may lead to increased grower acceptance will be outlined.

Free access

Teryl R. Roper and Armand R. Krueger

Cranberry plants exclusively utilize ammonium forms of nitrogen. Nitrification of applied ammonium and subsequent leaching through sandy soils is a potential problem for growers. Peat, sand, and striped soils were collected in cranberry beds in central Wisconsin and soil pH was adjusted to 3.5, 4.5, or 5.5. Twenty-five grams of dry soil was placed in flasks and half the flasks were sterilized. Distilled water was added to half of the samples, and the other half received 15N-labeled ammonium. Flasks were incubated at 20°C for up to 70 days. Striped soils showed no nitrification at pH 3.5 or 4.5 during the 70 day incubation. At pH 5.5, nitrification began at 20 days and was almost complete at 70 days. Nitrification did not occur at any pH in sandy soils. This research suggests that ammonium fertilizer applied to cranberry is likely taken up before nitrification would occur.

Free access

Nicholi Vorsa and James J. Polashock

The flavonoids of american cranberry (Vaccinium macrocarpon Ait.) are documented to be beneficial for human health. Among their benefits is a high antioxidant potential, with anthocyanin glycosides being the main contributors. Flavonoid glucose conjugates are reported to be more bioavailable than those with other sugar conjugates. The anthocyanin glycosides of V. macrocarpon fruit are mainly galactosides and arabinosides of the aglycones, cyanidin and peonidin, with less than 8% glucosides. In contrast, the fruit anthocyanins of another cranberry species, V. oxycoccus L. were found to be largely glucosides of cyanidin and peonidin. Interspecific hybrids between these two species were intermediate to the parental species in the proportion of fruit anthocyanin glucosides. About half the progeny (1:1 segregation) in a backcross population (to V. macrocarpon) maintained the relatively high anthocyanin glucoside ratio. In this study, we demonstrate the genetic manipulation of anthocyanin glycosylation in cranberry using interspecific hybridization, resulting in dramatically increased glucose-conjugated anthocyanins.

Free access

Kris L. Wilder, J. M. Hart, Arthur Poole, and David D. Myrold

Little work has been done to establish the rate and timing of nitrogen fertilizer applications to optimize return from fertilizer expenditures and minimize potential for ground and surface water pollution in Oregon cranberries (Vaccinium macrocarpon Ait.). Predicting cranberry N requirements is difficult because cranberries require little N and soil tests for N are not helpful for perennial crops, especially when grown in shallow sandy soils. We used 15N-labeled ammonium sulfate to measure both plant uptake and movement of fertilizer N in a south coastal Oregon cranberry bed. A bed planted to the Stevens variety was fertilized with 15N-labelled ammonium sulfate at two rates (18 kg/ha and 36 kg/ha) applied at five phonological stages: popcorn, hook, flowering, early bud, and late bud. Plant N uptake and translocation were measured throughout the growing season in uprights, flowers, berries, and roots, Initial results indicate that when N was applied at popcorn stage approximately 12% of the N was present in the above-ground vegetative biomass at harvest. Incorporation of fertilizer N into the duff and mineral soil was measured. An estimate of fertilizer N leaching was made by trapping inorganic N below the root zone using ion exchange resin bags.

Free access

A. Averill, C. DeMoranville, K. Deubert, B. Morzuch, and S. Edwards

Low input cranberry production was carried out at 4 sites (2 each for the common MA cultivars) to demonstrate: 1. reduced pesticide and fertilizer input; 2. enhanced water quality (compared to standard management); 3. ecomonic feasibility. Presented results: 1. number of insecticide applications reduced 60%, number of fungicide applications reduced 40% (at least half were copper based non-synthetics), broadcast herbicides used at less than 1/2 allowed rate (if at all), fertilizer N input reduced 30% on average; 2. reduced chemical input impacted positively on water quality; 3. crop quality was maintained but yield was reduced. Because the MA cranberry crop was down by up to 40% due to weather-related factors, crop reductions cannot be accurately assigned to cultural and management practices. The project will continue for at least 2 more years.

Free access

Carolyn DeMoranville

An extensive study (276 samples) was conducted in 1960 to correlate cranberry (Vaccinium macrocarpon, Ait.) bog soil pH and productivity (Chandler, F. B. and Demoranville, I. E. 1961. Cranberries 26(3):9-10). At that time, soil pH averaged 4.37 and excellent productivity was represented by a yield greater than 10 mT/ha. Thirty years later, when more than 28 mT/ha is considered good yield, soil samples will be collected from these same sites and evaluated for pH by the methods used previously. Production records for the pact three years will be obtained and the average value for each location used to construct a regression of bog yield vs soil pH. Information presented will include: 1. productivity vs soil pH in 1960 and 1990; 2. change in soil pH after 30 years?; 3. possible reasons for changes-if any (grower interviews); 4. implications for the future.

Free access

Kris L. Wilder, Timothy L. Righetti, and Arthur Poole

Cranberry (Vaccinium macrocarpon Ait.) is an important crop in Oregon. However, nutrient critical levels have not been established. Since developing nutrient critical levels usually requires time-consuming and expensive field trials, we chose to use the Diagnosis and Recommendation Integrated System (DRIS), which can use survey data to determine critical levels. We analyzed 139 cranberry samples collected from the southern Oregon coastal area over a three-year period. Leaf concentrations for N, P, K, S, Ca, Mg, Mn, Fe, Cu, B, and Zn in bearing uprights collected in mid-August were matched with the corresponding yields. DRIS was employed to obtain norms and critical levels from this survey data. To test our DRIS norms and critical levels, we evaluated two published experiments (Torio and Eck, 1969 and Medappa and Dana, 1969) where fertility treatments altered mineral concentrations and affected yield. Both ratio-based and critical concentration diagnoses were useful. Changes in the Nutrient Imbalance Index was a good predictor of yield response.

Free access

B.C. Strik, T.R. Roper, C.J. DeMoranville, J.R. Davenport, and A.P. Poole

Biennial bearing has long been thought to occur in cranberry (Vaccinium macrocarpon Ait). Researchers have shown that percent return bloom on fruiting uprights can range from 12% to 65% depending on year, bed vigor and cultivar. Resource limitation and/or hormonal factors in a fruiting upright may be related to flower bud initiation and, thus, percent return bloom the following year. This research was undertaken to determine the extent of biennial bearing by cranberry cultivar and growing region. Seven cultivars were studied; three found in all states (MA, NJ, WI, OR), two common to MA and NJ, and two different cultivars in WI and OR representing cultivars commercially grown in these areas. In the fall or winter of 1989/1990 six 2-m transects were randomly selected within a cranberry bed for each cultivar. Along the transect, 60 uprights that fruited in 1989 were tagged. In the summer of 1990, fifty of the uprights will be sampled to determine percent return bloom and percent set.

Free access

B.C. Strik, T.R. Roper, C.J. DeMoranville, J.R. Davenport, and A.P. Poole

Biennial bearing has long been thought to occur in cranberry (Vaccinium macrocarpon Ait). Researchers have shown that percent return bloom on fruiting uprights can range from 12% to 65% depending on year, bed vigor and cultivar. Resource limitation and/or hormonal factors in a fruiting upright may be related to flower bud initiation and, thus, percent return bloom the following year. This research was undertaken to determine the extent of biennial bearing by cranberry cultivar and growing region. Seven cultivars were studied; three found in all states (MA, NJ, WI, OR), two common to MA and NJ, and two different cultivars in WI and OR representing cultivars commercially grown in these areas. In the fall or winter of 1989/1990 six 2-m transects were randomly selected within a cranberry bed for each cultivar. Along the transect, 60 uprights that fruited in 1989 were tagged. In the summer of 1990, fifty of the uprights will be sampled to determine percent return bloom and percent set.

Free access

C.J. DeMoranville, T.R. Roper, K.D. Patten, J.R. Davenport, B.C. Strik, and A.P. Poole

Biennial bearing of uprights has been documented for cranberry (Vaccinium macrocarpon Ait.). Percent return bloom (%RB) may vary from 14% to 74% depending on cultivar and growing region. Floral initiation for the following season in cranberry takes place during the same time period as flowering and fruit set for the current season. This research was undertaken to document the effect of fruiting or not fruiting in the previous year on %RB and %RF (return fruit) in two cultivars (Stevens and Ben Lear) and five growing regions (MA, NJ, WI, OR, WA). Previous year fruiting caused a reduction in %RB compared to non-fruiting in the previous year. The effect on %RF was even greater. For `Ben Lear', uprights that fruited in 1990 had 31%RB and 22%RF while those that did not fruit in 1990 had 67%RB and 54%RF. Both %RB and %RF in 1991 were about 49% lower for `Stevens' which fruited in 1990 than those that did not fruit in 1990. It is still not clear whether biennial bearing in cranberry uprights is a function of hormonal interaction and regulation or of resource limitation or both.