Search Results

You are looking at 71 - 80 of 464 items for :

  • volumetric water content x
  • Refine by Access: All x
Clear All
Free access

Kirk W. Pomper and Patrick J. Breen

Expansion of green-white and red fruit in control (watered) and water-stressed greenhouse-grown strawberry (Fragaria ×ananassa Duch. `Brighton') plants was monitored with pressure transducers. Expansion of green-white fruit in control plants was rapid, showing little diurnal variation; whereas in water-stressed plants, fruit expansion occurred only during dark periods and shrinkage during the day. Red fruit were mature and failed to show net expansion. The apoplastic water potential (ψaw), measured with in situ psychrometers in control plants was always higher in leaves than in green-white fruit. In stressed plants, ψaw of leaves was higher than that of green-white fruit only in the dark, corresponding to the period when these fruit expanded. To determine the ability of fruit to osmotically adjust, fruit were removed from control and water-stressed plants, and hydrated for 12 hours; then, solute potential at full turgor (ψs 100) was measured. Water-stressed green-white fruit showed osmotic adjustment with a ψs 100 that was 0.28 MPa lower than that of control fruit. Mature leaves of water-stressed plants showed a similar level of osmotic adjustment, whereas water stress did not have a significant effect on the ψs 100 of red fruit. Fruit also were severed to permit rapid dehydration, and fruit solute potential (ψs) was plotted against relative water content [RWC = (fresh mass - dry mass ÷ fully turgid mass - dry mass) × 100]. Water-stressed, green-white fruit had a lower ψs for a given RWC than control fruit, further confirming the occurrence of osmotic adjustment in the stressed fruit tissue. The lack of a linear relationship between turgor pressure and RWC prevented the calculation of cell elasticity or volumetric elastic modulus. Osmotic adjustment resulted in about a 2.5-fold increase in glucose and sucrose levels in water-stressed green-white fruit. Although green-white fruit on water-stressed plants showed osmotic adjustment, it was not sufficient to maintain fruit expansion during the day.

Free access

Jason D. Murray, John D. Lea-Cox, and David Ross

The physical properties of soilless substrates used in the nursery industry vary widely throughout the US, and, as such, present problems for accurate irrigation water management. Water management in soilless substrates is also a key factor in reducing the loss of soluble nitrogen and phosphorus from the root volume. Automated irrigation control that maintains the substrate water content above levels of plant water stress, yet below the maximum water holding capacity of the substrate will serve several positive roles: water and nutrients will be conserved, and losses from run-off minimized. We investigated whether Time Domain Reflectrometry (TDR) moisture sensors can be effectively calibrated for a range of horticultural substrates in various container sizes. A series of water desorption curves and TDR wave-traces (n = 10) were simultaneously derived for six soilless substrate source materials (pine bark, hardwood bark, promix, perlite, rockwool and a sieved sand control), using a modified tension table with four column heights (7-, 15-, 20-, and 25-cm equating to rockwool, #1, #3, and #5 pot sizes). Modifying the tension table allowed for the replication of individual columns (n = 10) of each substrate. The volumetric water desorbed at increasing desorption (positive air) pressures from 0 through 100 KPa was collected for each treatment. Repeated measurements with this apparatus allowed us to plot standard TDR curves for each substrate that can be used to accurately schedule cyclic irrigations. Implementing automated cyclic irrigation strategies in container production will allow for better monitoring and control of irrigation applications, and help conserve water and nutrients in the nursery.

Full access

Alberto Pardossi and Luca Incrocci

irrigation is the major user of fresh water accounting for over 70% of water use worldwide. Therefore, improving irrigation WUE, defined as the ratio of applied water to crop yield, is decisive to sustain the food demand due to the fast-growing world

Free access

Krishna S. Nemali and Marc W. van Iersel

Poster Session 14—Water Utilization in Horticulture 19 July 2005, 12:00–12:45 p.m. Poster Hall–Ballroom E/F

Free access

William L. Bauerle, William W. Inman, and Jerry B. Dudley

Quantitative differences in leaf abscisic acid (ABAL) among four cultivars of red (Acer rubrum L.) and one Freeman maple (Acer × freemanii E. Murray) were investigated. This study tested the hypothesis that ABAL concentration can be used to compare the effects of water stress on the gas exchange response of five different maple cultivars, including four red maple genotypes, `Summer Red', `October Glory', `Autumn Flame', and `Franksred' (Red Sunset), as well as one hybridized Freeman maple genotype, `Jeffersred' (Autumn Blaze). Cloned genotypes of red and Freeman maple were subjected to two treatments: 1) irrigated daily to container capacity or 2) irrigation withheld for one drought and recovery cycle. Leaf abscisic acid concentration, gas exchange, and whole-tree sap flow measurements were conducted under both conditions. Over the course of the drought stress and recovery phase, net photosynthesis (Anet), stomatal conductance (gs), and transpiration (E) declined as ABAL and instantaneous water use efficiency (A/gs) increased. This study found that ABAL tracked gs and that stomatal responsiveness to substrate moisture deficit is likely mediated by ABA accumulation in leaf tissue. This research demonstrates a leaf-level physiological response to substrate volumetric water content that appears to depend on ABAL concentration. In addition, the evidence in this study indicates that ABAL may be used as a potential surrogate for the gs response to substrate water stress and could become part of a cultivar drought tolerance selection strategy for red and Freeman maple.

Free access

Krishna Nemali* and Marc van Iersel

Subjecting bedding plants to non-lethal moisture stress is an established irrigation practice for bedding plants; however information on physiological responses of bedding plants to moisture stress is limited. We examined the CO2 exchange rates (CER) and water relations of salvia (Salvia splendens) and vinca (Catharanthus roseus) during moisture stress. Seedlings of both species were grown from seed in 7-L trays containing a soilless growing medium. After plants completely covered the trays, they were irrigated and shifted into whole-plant gas exchange chambers (27 °C and daily light integral of 7.5 mol/m2) arranged inside a growth chamber. Inside the gas exchange chambers, the growing medium was allowed to dry and plants were re-watered after wilting. Results from this study indicate that the growth rate (moles of CO2 gained by plants in a day) of salvia was higher than vinca before experiencing moisture stress; however the volumetric moisture content of the growing medium at which plant growth decreased was higher for salvia than for vinca. During moisture stress, the decrease in growth rate of salvia was gradual and that of vinca was rapid. After re-watering the plants, leaf water potential (ΨL) and growth rate of vinca revived completely, and ΨL of salvia remained low (more negative), whereas its growth rate revived completely. This study shows that bedding plant species respond differently to moisture stress, particularly with respect to the critical substrate moisture level for initiating moisture stress and the rate of development of moisture stress.

Free access

Maxim J. Schlossberg and William P. Miller

Coal combustion by-products (CCB) are produced nationwide, generating 108 Mg of waste annually. Though varied, the majority of CCB are crystalline alumino-silicate minerals. Both disposal costs of CCB and interest in alternative horticultural/agricultural production systems have increased recently. Field studies assessed the benefit of CCB and organic waste/product mixtures as supplemental soil/growth media for production of hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] sod. Growth media were applied at depths of 2 to 4 cm (200 to 400 m3·ha-1) and vegetatively established by sprigging. Cultural practices typical of commercial methods were employed over 99- or 114-day growth periods. Sod was monitored during these propagation cycles, then harvested, evaluated, and installed offsite in a typical lawn-establishment method. Results showed mixtures of CCB and biosolids as growth media increased yield of biomass, with both media and tissue having greater nutrient content than the control media. Volumetric water content of CCB-containing media significantly exceeded that of control media and soil included with a purchased bermudagrass sod. Once installed, sod grown on CCB-media did not differ in rooting strength from control or purchased sod. When applied as described, physicochemical characteristics of CCB-media are favorable and pose little environmental risk to soil or water resources.

Free access

William L. Bauerle, William W. Inman, and Jerry B. Dudley

Quantitative differences in leaf abscisic acid (ABAL) among four cultivars of red maple (Acer rubrum L.) and one freeman maple (Acer ×freemanii E. Murray) cultivar were investigated. This study tested the hypothesis that ABAL concentration can be used to compare the effects of water stress on the gas exchange response of five different maple genotypes, including four red maple cultivars [`Summer Red', `October Glory', `Autumn Flame', and `Franksred' ('Red Sunset')] and one hybridized freeman maple cultivar ['Jeffersred' ('Autumn Blaze')]. Two-year-old cloned genotypes of red maple and freeman maple were subjected to two treatments: irrigated daily to container capacity or irrigation withheld for one drought and recovery cycle. Leaf abscisic acid concentration, gas exchange, and wholetree sap flow measurements were conducted under well-watered and drought stress conditions. Over the course of the drought stress and recovery phase, net photosynthesis (Anet), stomatal conductance (gs), and transpiration (E) declined as ABAL and instantaneous water use efficiency (A/gs) increased. Until severe water stress conditions were prominent, water use was higher in `Summer Red' as compared to `October Glory'. This study found that ABAL tracked gs and that stomatal responsiveness to substrate moisture deficit is likely mediated by ABA accumulation in leaf tissue. This research demonstrates a leaf level physiological response to substrate volumetric water content that appears to depend on ABAL concentration. In addition, the evidence in this study indicates that ABAL may be used as a potential surrogate for the gs response to substrate water stress and could become part of a cultivar drought tolerance selection strategy for red maple and freeman maple.

Free access

Yaling Qian and Jack D. Fry

Greenhouse studies were conducted on three warm-season turfgrasses, `Midlawn' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy], `Prairie' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and `Meyer' zoysiagrass (Zoysia japonica Steud.), and a cool-season turfgrass, `Mustang' tall fescue (Festuca arundinacea Schreb.) to determine 1) water relations and drought tolerance characteristics by subjecting container-grown grasses to drought and 2) potential relationships between osmotic adjustment (OA) and turf recovery after severe drought. Tall fescue was clipped at 6.3 cm once weekly, whereas warm-season grasses were clipped at 4.5 cm twice weekly. The threshold volumetric soil water content (SWC) at which a sharp decline in leaf water potential (ψL) occurred was higher for tall fescue than for warm-season grasses. Buffalograss exhibited the lowest and tall fescue exhibited the highest reduction in leaf pressure potential (ψP) per unit decline in ψL during dry down. Ranking of grasses for magnitude of OA was buffalograss (0.84 MPa) = zoysiagrass (0.77 MPa) > bermudagrass (0.60 MPa) > tall fescue (0.34 MPa). Grass coverage 2 weeks after irrigation was resumed was correlated positively with magnitude of OA (r = 0.66, P < 0.05).

Full access

Roberto Núñez-Elisea, Bruce Schaffer, Mongi Zekri, Stephen K. O'Hair, and Jonathan H. Crane

South Florida Water Management District (SFWMD). The technical help of Miriam C. Martínez is gratefully acknowledged. The cost of publishing this paper was defrayed in part by page charges. Under postal regulations, this paper therefore must be hereby