Search Results

You are looking at 71 - 80 of 3,861 items for :

  • Refine by Access: All x
Clear All
Full access

Charles S. Vavrina and William Summerhill

Thirty-four operators produced > 1.15 billion vegetable transplants in Florida in the 1989-90 season. Sales, concentrated in the winter and spring, were estimated at $30 million. Firms in the industry also made additional sales of ornamental and agronomic plants. Nine large firms accounted for 88% of all transplants produced. More than 109 acres (44 ha) of greenhouse area are allocated to containerized vegetable production. The majority (83%) of Florida s vegetable transplants were from three crops--tomatoes (45%), peppers (28%), and cabbage (10%). Only 36% of the transplants produced in the state were shipped out-of-state. This report discusses various facets of production, marketing, labor, and general business conditions of the containerized vegetable transplant industry.

Free access

Shinsuke Agehara and Daniel I. Leskovar

Vegetable transplant production in high-density plug trays can induce excessive stem elongation as a result of shade avoidance responses ( Marr and Jirak, 1990 ; Smith, 1994 ). The resulting spindly transplants are generally considered unsuitable

Free access

Joshua R. Gerovac, Roberto G. Lopez, and Neil S. Mattson

bedding plants transplanted during week 14 in HTs to a GH revealed that dianthus ( D. chinensis ), petunia ( Petunia × hybrida ), and pansy ( Viola ×cornuta ) could be produced in an HT with little to no delay in time to flower. For example, dianthus

Free access

Marc van Iersel

Auxins are commonly used to induce root formation during in-vitro culture of higher plants. Because transplanting is often accompanied by root damage and loss of small roots, auxins also could be beneficial in minimizing transplant shock. Vinca (Cataranthus rosea) seeds were germinated in a peat-lite growing mix and transplanted into pots (55 mL) filled with a diatomaceous earth (Isolite) 10 days after planting. Pots were then placed in a tray containing 62.5 mL of auxin solution per pot. Two different auxins [indole-acetic acid (IAA) and naphtylacetic acid (NAA)] were applied at rates ranging from 0.01 to 100 mg/L. Post-transplant growth was slow, possibly because of Fe+2-deficiencies. Both IAA (1–10 mg/L) and NAA (0.01–10 mg/L) significantly increased post-transplant root and shoot growth. As expected, NAA was effective at much lower concentrations than IAA. At 63 days after transplant, shoot dry mass of plants treated with 0.1 mg NAA/L was four times that of control plants, while 10 mg IAA/L increased shoot dry mass three-fold. High rates of both IAA (100 mg/L) and NAA (10–100 mg/L) were less effective. The highest NAA rate (100 mg/L) was phytotoxic, resulting in very poor growth and death of many plants. These results suggest that auxins may be a valuable tool in reducing transplant shock and improving plant establishment.

Full access

Charles E. Barrett, Xin Zhao, and Alan W. Hodges

Sorribas, 2008 ). However, grafting in the United States has not yet reached its full potential as a control for soil-borne pathogens and nematodes. It has been estimated that 40 million grafted vegetable transplants are currently used in the United States

Free access

Shinsuke Agehara and Daniel I. Leskovar

Vegetable transplants grown for commercial producers need an ideal size to minimize damage during shipping and transplanting operations and to enable successful establishment in the field ( Agehara and Leskovar, 2015 ). However, vegetable

Free access

V.M. Russo

Commercially produced bare-root onion (Allium cepa L.) transplants may not be uniform in size and require a period following planting in which to begin regrowth. There is little information on how, when established in the field, plants developed from greenhouse grown onion transplants differ from those that develop from bare-root transplants. Development and yield for onions grown from bare-root transplants were compared to plants produced from transplants grown in single cells with volumes of 36 or 58 cm3 in seedling production trays in a greenhouse. `Texas Grano 1015Y' and `Walla Walla' onions were established in the field with commercially available bare-root transplants or with greenhouse grown transplants produced in trays. Bare-root transplants were heavier than 8-week-old greenhouse grown transplants. Fresh weights of transplants produced in 58-cm3 cells were heavier than those from 36-cm3 cells, but dry weights were similar. From when about 20% of onion tops were broken over, onion bulb diameters did not increase sufficiently to justify delaying harvest until 50% of tops had broken over. Yields of `Walla Walla' were better than those of `Texas 1015 Y' and yields from plants developed from seedlings grown in 58-cm3 cells were similar to those from plants developed from bare-root transplants and better than those from plants developed from seedlings grown in 36-cm3 cells. Individual bulb weights of `Texas 1015 Y' were not affected by transplant type and averaged 162 g. Individual bulbs for `Walla Walla' from plants developed from bare-root transplants and those produced in 58-cm3 cells were similar in weight (averaged 300 g) and were heavier than those from plants developed from transplants grown in 36-cm3 cells (240 g). Greenhouse transplants produced in trays with the larger cells may provide an alternative to the use of bare-root transplants, if transplant production costs are comparable.

Free access

Charles S. Vavrina, Stephen Olson, and J.A. Cornell

Total fruit yield of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] in Florida field tests was unaffected by transplant age (3, 4, or 5 weeks from seeding) or modular cell size (18.8, 30.7, or 60.5 cm3), but was affected by trial year. A further study revealed that early and total fruit yields at two field sites were unaffected by transplant age, ranging from 3 to 13 weeks, when grown in the same modular cell size (34 cm3), but were affected by field trial site. We conclude that transplant age or modular cell size is of little importance relative to post-transplanting conditions (site or year) in influencing watermelon fruit yield.

Free access

Lindsay C. Paul and James D. Metzger

Vermicomposting is a promising method of transforming unwanted and virtually unlimited supplies of organic wastes into usable substrates. In this process, the digestive tracts of certain earthworm species (e.g., Eisenia fetida) are used to stabilize organic wastes. The final product is an odorless peat-like substance, which has good structure, moisture-holding capacity, relatively large amounts of available nutrients, and microbial metabolites that may act as plant growth regulators. For these reasons, vermicompost has the potential to make a valuable contribution to soilless potting media. The objective of this study was to evaluate the transplant quality and field performance of vegetable transplants grown in vermicompost. Tomato (Lycopersicon esculentum Mill.), eggplant (Solanum melongena L.), and pepper (Capsicum annuum L.) transplants were grown in a commercial soilless mix including 0%, 10%, or 20% (v/v) worm-worked cattle manure. Growth of vegetable transplants was positively affected by addition of vermicompost, perhaps by altering the nutritional balance of the medium. Transplant quality was improved in peppers and eggplants while tomato transplant quality was slightly reduced. There were no significant differences in field performance.

Free access

J. Roger Harris and Susan D. Day

landscape trees may result from uninformed nursery practices that leave structural roots too deeply buried when harvested, planting too deep at transplant, or placing fill over roots during site grading. Trees with deep structural roots are thought to be