Search Results

You are looking at 71 - 80 of 1,247 items for :

  • molecular markers x
  • Refine by Access: All x
Clear All
Free access

Kanta Kobira, Khalid Ibrahim, Elizabeth Jefferey, and John Juvik

Considerable epidemiological evidence exists on the association between consumption of antioxidant-rich vegetables and incidence of chronic diseases, including cancer and cardiovascular disease. Broccoli (Brassica oleracea L. sp. italica) florets are relatively abundant sources of antioxidants, and potentially amenable to genetic manipulation to enhance this vegetable's health-promoting properties. This investigation focuses on the identification of chromosomal segments in the nuclear genome of broccoli associated with antioxidant carotenoid and tocopherol variability. A broccoli F2:3 population consisting of 163 families derived from a cross between two parents (VI-158 and BNC) and previously mapped with 62 polymorphic SSR and SRAP marker loci was evaluated for carotenoid and tocopherol concentration in floret tissue over two growing seasons. Significant differences were observed among F2:3 family means for concentrations of lutein (10-fold difference between the lowest and highest family), beta-carotene 17-fold), alpha-tocopherol (8-fold) and gamma-tocopherol (6-fold). On a concentration basis, beta-carotene, lutein, alpha-tocopherol, and gamma-tocopherol were the most abundant antioxidant forms in broccoli. Heritability estimates of primary phytochemicals ranged from 0.35 to 0.38, 0.40, and 0.44 for beta-carotene, alpha-tocopherol, gamma-tocopherol, and lutein, respectively. Composite interval mapping (CIM) identified two quantitative trait loci (QTL) associated with carotenoid variability on two linkage groups and five QTL associated with tocopherol variability on four linkage groups. The QTL identified in this study have potential for use in marker-assisted crop improvement programs to develop elite germplasm designed to promote health among the consuming public.

Free access

Kentaro Kitahara, Shogo Matsumoto, Toshiya Yamamoto, Junichi Soejima, Tetsuya Kimura, Hiromitsu Komatsu, and Kazuyuki Abe

We examined the genetic diversity and relatedness among apple (Malus ×domestica Borkh.) cultivars in Japan. The 42 apple cultivars, including major cultivars in Japan, were divided into five groups based on SSR genotypes. Most economically important cultivars belong in three groups: Fuji-Delicious, Golden Delicious, and Jonathan groups, and their genetic backgrounds seemed to be narrow. We also investigated the parent-offspring relationships of nine apple cultivars. `Jonathan', `Fuji', and `Rero 11' were identified as the respective paternal parents of three cultivars described as having unknown paternal parents (i.e., `Akagi', `Ambitious', and `Hokuto'). `Starking Delicious', `Senshu', and `Golden Delicious', rather than `Ralls Janet', `Hatsuaki', and `Indo', seemed to be the paternal parents of `Kinsei', `Kiou', and `Mellow', respectively. `Carolina Red June' was excluded as a paternal parent of `Ranzan'. Both attributed parents of `Scarlet' (`Akane' and `Starking Delicious') were excluded, and it was suggested that `Fuji' was used as either a maternal or a paternal parent of `Scarlet'. `Jonathan' rather than `McIntosh' seems to be a maternal parent of `Yukari'.

Free access

W.V. Baird, R.E. Ballard, S. Rajapakse, and A.G. Abbott

Free access

David Shupert, Aaron P. Smith, Jules Janick, Peter B. Goldsbrough, and Peter M. Hirst

The codominant PCR marker AL07-SCAR closely linked to the Vf gene for scab resistance was used to genotype seedlings in three apple populations in which each parent (`GoldRush', `Enterprise', `Pristine', and CQR10T17) was resistant to apple scab. The marker was used to predict the genotype at the Vf locus. Each parent was heterozygous. In two populations (CQR10T17 × `GoldRush' and `Pristine' × `GoldRush') seedlings segregated 1:2:1 for fragments associated with VfVf:Vfvf:vfvf as predicted by Mendelian segregation. However, in another population (`GoldRush' × `Enterprise') the ratio was 1.5:1:1.5, suggesting some type of selection against heterozygotes. Fruiting seedlings were rated for the presence of fruit scab. No scab was observed on seedlings homozygous for the PCR marker linked to Vf, a small amount of scab was observed on one heterozygous seedling out of 35, and 22 of 26 seedlings that were homozygous recessive, had fruit scab.

Free access

Darlene M. Lawson, Minou Hemmat, and Norman F. Weeden

Five morphological and developmental traits (branching habit, vegetative budbreak, reproductive budbreak, bloom time, and root suckering) were analyzed in a family obtained from the apple (Malus domestica Borkh) cross `Rome Beauty' × `White Angel'. The phenotypic variation in these traits was compared with a selected set of marker loci covering the known genome of each of the parents to locate genes with major effects on the traits. The contrasting branching habits of the two parents appeared to be controlled by at least two loci. One of these, Tb, governed the presence or absence of lateral branches, particularly on the lower half of shoots. The locus was heterozygous in `White Angel' and was mapped to a 5 CM interval on linkage group 6. At least one other locus conditioning spur-type branching appeared to be segregating, but the locus or loci could not be linked to segregating markers. The timing of initial vegetative growth was tightly associated with the chromosomal region in which the Tb gene is located and maybe a pleiotropic effect of this gene. Time of reproductive budbreak correlated with segregation at the isozyme marker, Prx-c, on linkage group 5. Variation in time of bloom and later stages in flower development appeared to be controlled by different genes not linked to Prx-c. The tendency to produce root suckers cosegregated with a marker on `White Angel' linkage group 1, suggesting control by a single locus, Rs. Data from a `Rome Beauty' x `Robusta 5' family provided additional information on the inheritance of these traits.

Free access

Frank Cheng, Norman Weeden, and Susan Brown

The ability to pre-screen apple populations for fruit color at an early seedling stage would be advantageous. In progeny of the cross `Rome Beauty' × `White Angel' red/yellow color variation was found to be highly correlated with the genotype at Idh-2, an isozyme locus that was heterozygous in both parents. We postulate that the red/yellow color variation was produced by a single gene linked to I&-2 and also heterozygous in both parents. This population was also screened with over 400 primers to detect randomly amplified polymorphic (RAPD) markers for fruit color. DNA extraction procedures were developed for bark, and DNA was extracted from bark samples and leaves. Red and yellow fruited individuals were examined in bulk. Several markers have been found that are linked to red color. A high density map is being constructed in this region. These markers are being examined in other crosses segregating for fruit color. The application of these markers will be discussed in relation to the inheritance and manipulation of fruit color.

Free access

Jan G. Tivang, Neal DeVos, James Nienhuis, and Paul Skroch

Individual heads (capitula) from five discrete artichoke, Cyara scolymus L., populations were evaluated using RAPD markers. One vegetatively-propagated cultivar; Green Globe; two seed-propagated cultivars, Imperial Star and Big Heart XR-1; and two breeding populations were examined. Twenty-seven RAPD primers were scored yielding 2 to 16 polymorphic bands resulting in a total of 178 bands. Our objective was to determine if RAPD markers could be used to distinguish between and within populations. The genetic relationships among populations as well as among individuals within each population were estimated using the ratio of discordant to total bands scored. Data reduction (MDS) provided a plot indicating five clusters corresponding to the five populations. Confirmation of the presence of five discrete clusters was obtained by analysis of variance of the marker frequencies. The genetic diversity index (GDI) was calculated for each populations as the pooled variance of band frequency for each population. The GDI values were highly correlated to the mean genetic distance within each population. The homogeneity of variance for the GDI values associated with each population were compared using the Siegel-Tukey test for homogeneity of spread.

Free access

Robert R. Krueger and Mikeal L. Roose

New potential citrus germplasm accessions may be received as seed rather than budwood, thereby reducing phytosanitary risks. However, trueness-to-type may be an issue with seed materials because many varieties produce both apomictic (nucellar) and sexual (zygotic) embryos and most citrus is fairly heterozygous. To identify nucellar seedlings of polyembryonic types and to retain these as representing the type, we screened 1340 seedlings from 88 seed sources for markers amplified with two inter-simple sequence repeat (ISSR) primers. Sixteen seed sources produced no seedlings classified as being of nucellar origin. Among the remaining seed sources, seedlings classed as nucellar were identified for potential addition to the collection. In 37 accessions, both nucellar and zygotic seedlings were detected, and in some cases both types were retained. Inclusion of established accessions of the same cultivar group in the analysis allowed an initial assessment of similarity to existing accessions. This technique improved the efficiency of acquiring new germplasm of polyembryonic types by seed. The method identifies those seed sources that produce few or no nucellar seedlings, but it is not useful for determining which seedlings of monoembryonic types should be retained in collections.

Free access

Pan-chi Liou, Fred G. Gmitter Jr., and Gloria A. Moore

Citrus genetic studies and cultivar improvement have been difficult with conventional techniques. Alternative approaches are needed to enhance efficiency of such studies. Our objectives were to characterize the Citrus genome and to initiate development of a linkage map using RFLP and isozyme analysis. Methods of Citrus DNA extraction were developed to allow the isolation of chromosomal DNA of acceptable quality for recombinant' DNA manipulations. A PstI Citrus genomic library was constructed to create DNA clones for the RFLP survey. A rapid, reliable procedure was developed to facilitate screening of the library for useful clones. The methods used and strategy followed minimized contamination with organelle DNA, increased the frequency of single copy clones, and allowed rapid screening of the newly–constructed library. Linkage relationships of 49. markers, including 36 RFLP and 6 isozyme loci, were analyzed and a map comprised of 8 linkage groups was constructed. Insertions or deletions were responsible for at least 30% of the RFLPs identified. A hypothesis of transposon activity in Citrus was proposed based on our observations.

Free access

Tim Rinehart and Sandy Reed

Hydrangea popularity and use in the landscape has expanded rapidly in recent years with the addition of remontant varieties. Most cultivars in production belong to the species Hydrangea macrophylla but H. paniculata, H. arborescens, H. serrata, H. aspera, H. heteromalla, H. integrifolia, H. anomala, H. seemanii, and H. quercifolia are also commercially available. In addition to species diversity there is high intra-species variation, particularly in H. macrophylla, which includes mopheads, lacecaps, French, Japanese, dwarf, and variegated varieties. Relatively little is known about the genetic background or combinability of these plants. DNA sequence data, genome size, RAPD, AFLP, and ISSR markers have been used for taxonomic identification and to estimate diversity within the genus. All of these methods have limited usefulness in a large scale breeding program. We recently established microsatellite markers for Hydrangea and evaluated their utility for estimating species diversity and identifying cultivars within H. macrophylla and H. paniculata. We also verified an inter-specific cross between H. macrophylla and H. paniculata using these markers. Future research includes marker assisted breeding, particularly with respect to remontant flowering traits.