Search Results

You are looking at 71 - 80 of 197 items for :

  • "weed suppression" x
  • All content x
Clear All
Free access

J.P. Mitchell, W.T. Lanini, S.R. Temple, E.V. Herrero, E.M. Miyao, P. Brostrom, R. Morse and F. Thomas

Conservation tillage (CT) row crop production is currently not widely adopted in California. Recently, however, interest in evaluating the potential of CT systems to reduce production costs and improve soil quality is growing in many areas in the state. In 1997 and 1998, we evaluated four cover crop mulches (rye/vetch, triticale/vetch, Sava medic, and Sephi medic) in a CT-transplanted tomato system relative to the conventional winter fallow (CF) practice. In both years, yields were comparable to the CF under the triticale/vetch and rye/vetch mulches. Earthworm populations after 2 years of CT production were increased 2- to 5-fold under mulches relative to the CF system. Soil carbon was increased by 16% and 6% after 2 years of CT production under the triticale/vetch and rye/vetch mulches, respectively. Weed suppression under the triticale/vetch and rye/vetch was comparable to the CF with herbicide system early in the season in both years but was maintained through harvest in only one season. Soil water storage (0-90 cm) was similar at the beginning of the tomato season in triticale/vetch, rye/vetch, and fallow plots but was higher under the mulches during much of the last 45 days of the 1998 season. Further refinement of CT practices in California's vegetable production regions is needed before wider adoption is likely.

Free access

John R. Teasdale and Aref A. Abdul-Baki

Hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) and mixtures of rye with hairy vetch and/or crimson clover were compared for no-tillage production of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) on raised beds. All cover crops were evaluated both with or without a postemergence application of metribuzin for weed control. Biomass of cover crop mixtures were higher than that of the hairy vetch monocrop. Cover crop nitrogen content varied little among legume monocrops and all mixtures but was lower in the rye monocrop. The C:N ratio of legume monocrops and all mixtures was <30 but that of the rye monocrop was >50, suggesting that nitrogen immobilization probably occurred only in the rye monocrop. Marketable fruit yield was similar in the legume monocrops and all mixtures but was lower in the rye monocrop when weeds were controlled by metribuzin. When no herbicide was applied, cover crop mixtures reduced weed emergence and biomass compared to the legume monocrops. Despite weed suppression by cover crop mixtures, tomatoes grown in the mixtures without herbicide yielded lower than the corresponding treatments with herbicide in 2 of 3 years. Chemical name used: [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one](metribuzin).

Free access

John L. Maas, John M. Enns, Stan C. Hokanson and Richard L. Hellmich

Larvae of several insects injure and kill strawberry (Fragaria ×ananassa Duchesne) plants by burrowing into and hollowing out plant crowns. Occasionally, these infestations are serious enough to cause heavy economic losses to fruit producers and nursery plant growers. In 1997 in Beltsville, Md., we observed wilting and dying mature plants and unrooted runner plants in two experimental strawberry plantings. Injury by larvae was extensive; large cavities occurred in crowns, and the central pith tissues were removed from stolons and leaf petioles. Often, insect frass was seen at entrance holes. Larvae removed from hollowed-out parts of injured plants were identified as the European corn borer (Ostrinia nubilalis Hübner) in their fifth instar stage. Their presence in this instance also was associated with a cover crop of millet [Setaria italica (L.) P. Beauv., `German Strain R'] planted between the strawberry rows for weed suppression. This is the first published report of the European corn borer attacking strawberry. Although this insect may occur only sporadically in strawberry plantings, it may become important in the future. Growers and other professionals should become aware of this new strawberry pest and recognize that its management in strawberry will be different from management of other crown-boring insects.

Full access

Shawn T. Steed, Allison Bechtloff, Andrew Koeser and Tom Yeager

Mulches have many positive benefits for the production of plants, ranging from weed suppression to water conservation. In this study, a novel method of using plastic film mulch for container-grown plants was evaluated. Plots of 25 japanese privet (Ligustrum japonicum) in #1 (2.5 qt) nonspaced containers were wrapped with 1.25-mil white or black plastic mulch over the top and sides of containers. Small plants were planted through the plastic and grown for 22 weeks with overhead irrigation. Water application amount was determined by moisture sensors placed in the substrate of each treatment. Plant growth, dry weights (DWs), weed fresh weights, weeding time, substrate electrical conductivity (EC), substrate temperature, total water applied, and mulch costs were determined. Black plastic (BP) and white plastic (WP) mulch reduced water applied by 82% and 91%, respectively, compared with the nontreated control (NT). Nontreated control plants grew faster and had greater DW at the end of the experiment. Mulched containers had fewer weeds and required less labor to remove weeds than the NT treatment. Substrate EC level was greater in BP and WP treatments than for the NT after 20 weeks, and plastic mulch did not result in different substrate temperatures. Plastic mulch added $4.94/1000 containers ($2.24 input cost and $2.70 removal cost) to production costs, not including disposal costs. This novel method of mulching nonspaced plants reduced irrigation water, herbicide applications, and weeding labor, but probably added 2–3 weeks to finish time.

Full access

Greg D. Hoyt and David W. Monks

Experiments were conducted to evaluate the effect of tillage systems and weed management on weed suppression and potato yield. Strip-tillage (ST) and conventional-tillage (CT) systems produced equal yields of Irish potato (Solanum tuberosum L.) or sweetpotato [Ipomoea batatas (L.) Lam.] when herbicide treatments were applied. Weeds in the nontreated control reduced yield of Irish potato and prevented storage root growth in sweetpotato. Excellent control of broadleaf signalgrass [Brachiaria platyphylla (Griseb.) Nash], henbit (Lamium amplexicaule L.), prickly sida (Sida spinosa L.), and common ragweed (Ambrosia artemisiifolia L.) was obtained with metribuzin + metolachlor applied preemergence at Irish potato planting, followed by sethoxydim + crop oil applied postemergence in ST and CT systems. Redroot pigweed (Amaranthus retroflexus L.) control was >98% at 4 weeks after treatment but was 73% to 84% at harvest across all herbicide treatments in both tillage systems. In sweetpotato, control of black mustard [Brassica nigra (L.) W.J.D. Koch], goosegrass [Eleusine indica (L.) Gaertn.], and fall panicum [Panicum dichotomiflorum Michx.] was >95% throughout the growing season for all herbicide treatments in both ST and CT.

Full access

John L. Maas, John M. Enns, Stan C. Hokanson and Richard L. Hellmich

Larvae of several insects injure and kill strawberry (Fragaria ×ananassa Duchesne) plants by burrowing into and hollowing out plant crowns. Occasionally, these infestations are serious enough to cause heavy economic losses to fruit producers and nursery plant growers. In 1997 in Beltsville, Md., we observed wilting and dying mature plants and unrooted runner plants in two experimental strawberry plantings. Injury by larvae was extensive; large cavities occurred in crowns, and the central pith tissues were removed from stolons and leaf petioles. Often, insect frass was seen at entrance holes. Larvae removed from hollowed-out parts of injured plants were identified as the European corn borer (Ostrinia nubilalis Hübner) in their fifth instar stage. Their presence in this instance also was associated with a cover crop of millet [Setaria italica (L.) P. Beauv., `German Strain R'] planted between the strawberry rows for weed suppression. This is the first published report of the European corn borer attacking strawberry. Although this insect may occur only sporadically in strawberry plantings, it may become important in the future. Growers and other professionals should become aware of this new strawberry pest and recognize that its management in strawberry will be different from management of other crown-boring insects.

Free access

Carlene A. Chase, Odemari S. Mbuya and Danielle D. Treadwell

The effect of living mulches (LM) on weed suppression, crop growth and yield, and soil hydraulic conductivity were evaluated in broccoli in North Central Florida at Citra and in North Florida at Live Oak, using organic production methods. `Florida 401' rye, `Wrens Abruzzi' rye, black oat, and annual ryegrass, were either mowed or left untreated and compared with weedy and weed-free controls. Cover crop biomass was highest with `Florida 401' at both locations, intermediate with black oat and `Wrens Abruzzi', and lowest with ryegrass. The greatest weed infestation occurred with the weedy control. In Citra, ryegrass decreased weed biomass by 21% compared with ≈45% by the other LM with no differences due to mowing. However, at Live Oak, mowed LM and the weedy control had similar amounts of weed biomass; whereas unmowed LM had 30% to 40% less weed biomass than the weedy control. At both locations, broccoli heights were greatest with the weed-free control, intermediate with the cover crops, and lowest with the weedy control. Total above-ground broccoli biomass and marketable weight of broccoli at Live Oak, and number of marketable heads at both locations, were unaffected by the LM. At Citra, total broccoli biomass with LM and the weedy control decreased in a similar manner, so that total broccoli biomass was highest with the weed-free control. Ryegrass and the weedy control suppressed marketable broccoli weight by 24%; however, greater decrease in marketable weight (39% to 43%) occurred with `Florida 401', `Wrens Abruzzi', and black oat. At both locations, mowing of LM had no effect on broccoli growth or yield. There was no difference in saturated hydraulic conductivity among treatments.

Free access

Christine Crosby, Hector Valenzuela, Bernard Kratky and Carl Evensen

In the tropics, weed control is a year-round concern. The use of cover crops in a conservation tillage system allows for the production of a crop biomass that can be killed and mowed, and later used as mulching material to help reduce weed growth. This study compared yields of three vegetable species grown in two conventional tillage systems, one weeded and one unweeded control, and in two no-tillage treatments using two different cover crop species, oats (Avena sativa L. `Cauyse') and rye grain (Secale cereale L.). The cover crops were seeded (112 kg/ha) in Spring 1998 in 4 × 23-m plots in a RCB design with six replications per treatment, and mowed down at the flowering stage before transplanting the seedlings. Data collection throughout the experimental period included quadrant weed counts, biomass levels, and crop marketable yields. Weed suppression was compared with the yields of the vegetable crops. The greatest vegetable yields were in the conventionally hand-weeded control and the worst in the un-weeded controls. Weed species composition varied depending on the cover crop species treatment. The rye better suppressed weed growth than the oats, with greater control of grass species. Rye, however, suppressed romaine and bell pepper yields more than the oat treatments. Similarly greater eggplant yields and more fruit per plant were found in the oat treatment than in the rye. Both cover crops suppressed weed growth for the first month; however, by the second month most plots had extensive weed growth. This study showed that at the given cover crop seeding rate, the mulch produced was not enough to reduce weed growth and provide acceptable yields of various vegetable crops.

Free access

E.T. Pippin, E.W. Bush, D.J. Lee and R.E. Strahan

Weeping lovegrass (Eragrostis curvula) is commonly used in native areas bordering golf courses in the Southeastern United States. These areas do not receive significant levels of maintenance, thus weed encroachment is a problem that can negatively impact the functional and aesthetic values of the golf course. The objectives of this study is to determine which selective postemergent herbicides labeled for use on golf courses can remove weeds from Weeping Lovegrass and to determine the level of phytotoxicity. Herbicides included monosodium methane arsenate (MSMA 6.0) applied at 3.0 lb/acre a.i., sulfosulfuron (Certainty) at 0.047 lb/acre a.i., metribuzin (Sencor 75 DF) at 0.5 lb/acre a.i., and imazaquin (Image 70 DG) at a rate of 0.5 lb/acre a.i.. Treatments were applied on July 20, 2004 to 9.6 × 9.6 plots arranged in a randomized complete block design (RCBD) using Teejet 8005 nozzles at 40 psi calibrated to deliver 40 ga/acre. Plots were monitored daily and data was collected 0, 7, 14, 21, 28, 35, and 42 DAT. Sulfosulfuron and MSMA provided the highest level of weed control 35 DAT. Metribuzin and imazaquin provided limited weed suppression compared to the control. Initial phytotoxic damage to the Lovegrass was observed in all herbicide treatments. The highest level of phytotoxic damage was observed in the MSMA and Metribuzin treatments; however there was no apparent damage at 42 DAT. Herbicide applications of sulfosulfuron and MSMA are effective in reducing weed populations with acceptable levels of phytotoxicity to the Lovegrass.

Free access

Jose Linares, Johannes Scholberg, Carlene Chase, Robert McSorley and James Fergusson

Lack of effective weed control may hamper organic citrus establishment. Cover crop/weed biomass (CCW) indices were used to assess the effectiveness of annual and perennial cover crops (CC) in reducing weed growth. The CCW values for perennial peanut (PP) were 0.06, 0.14, 0.4, and 0.5 during 2002, 2003, 2004, and 2005, respectively (very poor to poor weed control). Initial PP growth was slow and repeated mowing was required, but, over time, PP became more effective in controlling weeds. Weed biomass with sunn hemp was 0.3 Mg/ha in 2002 (CCW = 25, outstanding weed control) compared to 1.4 Mg/ha with use of cowpea (CCW = 1) in 2004. In 2004, the dry weights (Mg/ha) for different summer CC were: hairy indigo = 7.6, pigeon pea = 7.6, sunn hemp = 5.3, cowpea = 5.1, alyce clover = 2.9, velvet bean = 1.3, and lablab bean = 0.8. Corresponding 2005 values were: 9.5, 3.7, 12.6, 1.0, 1.9, and 1.4. Respective CCWI values were: 7, 4, 2, 16, 28, 0.6, and 0.3 (2004) vs. 17, 2, 64, 80, 0.5, 2, and 14. In 2004, winter CC production (Mg/ha) was radish (R) = 3.2, crimson clover (CR) = 1.7, oats (O) + lupine = 1.6, and rye (WR)/vetch (V) mix = 1.1. Results for 2005 were: CR + R + WR = 8.0, WR = 6.0; CR + WR = 5.3, CR = 5.0, CR + O + WR = 5.0, R = 4.3, and O = 3.6 Mg/ha. Corresponding values for CCW-indices were 15, 2, 1, and 3 (2004) and 100, 25, 76, 35, 62, 11, and 16 (2005). Although OMRI-approved herbicides showed up to 84% weed injury for selected species, none of these products provided long-term weed control. Combination of repeated tillage, use of compact/reseeding CC mixes in tree rows, more vigorous annual CC and/or perennial PP in row middle and repeated use of organic herbicides near sprinklers and tree trunks are thus required to ensure effective weed suppression in organic citrus.