Search Results

You are looking at 71 - 80 of 1,238 items for :

  • "seed germination" x
  • Refine by Access: All x
Clear All
Free access

James A. Schrader and William R. Graves

The genus Dirca L. (Thymelaeaceae) consists of three species of understory shrubs. Dirca palustris L. is sparsely distributed across eastern North America, D. occidentalis Gray is endemic near the San Francisco Bay, and D. mexicana Nesom & Mayfield is known only in one population in northeastern Mexico. Despite interest in the horticultural use of Dirca, plants seldom are marketed. Difficult propagation impedes production of Dirca. We sought to define protocols that promote uniform seed germination of all three Dirca spp. Endodormancy and paradormancy cause sporadic germination over several years under natural conditions, but endocarp removal, cold stratification, and treatment with GA3 increased germination percentage, speed, and uniformity. Dirca occidentalis was most responsive; up to 94% of seeds germinated after endocarp removal, 24 hours in GA3 at 50 mg·L–1, and stratification at 4 °C for 30 days. Treatments also were effective for D. palustris (up to 68% germination), but seeds of D. mexicana were unresponsive and germinated at 25% or less. Seed treatments should facilitate production of D. occidentalis and D. palustris, but further research is needed to define methods to propagate D. mexicana for horticultural use and for conserving this rare species in the wild.

Free access

Wayne A. Mackay and Tim D. Davis

Seeds of four lupine species (L. microcarpus var. aureus, L. havardii, L. succulentis, and L. texensis) were subjected to 0, –2, –4, –6, or –8 bars osmotic potential using PEG 8000 solutions. Seeds of all species were acid scarified prior to placement in petri dishes containing the osmotic solutions. Petri dishes were placed in a seed germination chamber at 25°C with germination data collected daily for 15 days. Seeds of L. havardii, a desert species native to west Texas exhibited the greatest germination as osmotic potential declined while L. succulentis, a species adapted to moist sites, exhibited the greatest decline in germination as osmotic potential decreased. The other species exhibited intermediate germinability under the lower osmotic potentials.

Free access

Phil S. Allen, Donald B. White, Karl Russer, and Dave Olson

An inexpensive system for maintaining desired water potentials throughout seed germination was developed. During hydration, a water reservoir at the base of inclined petri dishes allowed continual saturation of filter paper on which seeds were placed. During dehydration, seeds were exposed to equilibrium vapor pressures above saturated salt solutions. Constant temperature, necessary to prevent condensation of water vapor, was achieved via a small (0.2 A) fan that furnished and circulated heat throughout an insulated chamber in which salt solutions were placed. By operating the chamber above ambient laboratory temperature, interior cooling was not required. The system allowed manipulation of the rate, degree, and frequency of dehydration episodes to which germinating seeds were exposed.

Free access

Carlma B. Bratcher, John M. Dole, and Janet C. Cole

The germination responses of wild blue indigo [Baptisia australis (L.) R. Br.], purple coneflower [Echinacea purpurea (L.) Moench.], Maximilian sunflower (Helianthus maximiliani Schrad.), spike goldenrod (Solidago petiolaris Ait.), and Missouri ironweed (Vernonia missurica Raf.) seeds after 0, 2, 4, 6, 8, or 10 weeks of stratification at 5C were investigated. Seed viability was determined using triphenyl tetrazolium chloride staining and germination based on the percentage of viable seeds. Germination percentage (GP) increased in all five species as weeks of stratification increased. Days to first germination and germination range (days from first to last germinating seed) decreased with increasing weeks of stratification, but the effect beyond 4 to 6 weeks was minimal. The number of weeks of stratification for maximum GP was 4 for purple coneflower, 6 for Maximilian sunflower, 8 for Missouri ironweed, and 10 for wild blue indigo and spike goldenrod.

Free access

Candice A. Shoemaker and William H. Carlson

Seeds of eight commonly grown bedding plant species [Ageratum houstonianum Mill., Begonia × semperflorens Hort., Impatiens wallerana Hook., Lobularia maritima (L.) Desv., Petunia × hybrida Hort., Pelargonium hortorum L.H. Bailey, Salvia splendens F. Sellow, Tagetes patula] were germinated at pH values from 4.5 to 7.5 at 0.5 increments. Seeds were germinated in petri dishes on filter paper saturated with buffer solutions or in petri dishes containing a 50 sphagnum peat: 50 coarse vermiculite (peatlite) medium moistened with buffer solutions. Germination on filter paper was affected by pH for all species tested. Peatlite medium pH affected germination of all species tested, except Salvia splendens. Species response to similar pH values differed between the two germination procedures. Total percent germination of seeds germinated was less in peatlite medium than on filter paper.

Free access

Joseph K. Peterson, Howard F. Harrison, and Maurice E. Snook

After removal of the periderm, cortex tissue of the sweetpotato cultivar Regal was collected. Polar extracts of this tissue strongly inhibited germination of proso-millet seed. C18 preparative, step-gradient chromatography (H2O → 100% methanol) gave some 50+ fractions, all of which were assayed for inhibitory properties. Analytical HPLC, using diode array detection and signal processing, showed the presence of chlorogenic, p-coumaric and caffeic acid, scopolin and some unknown phenolic acids. Most fractions were inhibitory to some degree; however, the least polar ones (in 90% and 100% methanol), containing unknown compounds, were most inhibitory. Semi-prep HPLC of these fractions produced eight major peaks (λmax at 210–213 nm, λ2 at 281–284 nm). In our bioassays, the compounds produced 50% inhibition of proso-millet seed germination at ≈60 ppm. It is likely that these compounds contribute significantly to the allelopathic properties of sweetpotato.

Open access

Patricia S. Holloway


Seeds of Alaska iris, Iris setosa Pall. ssp. interior (Anders.) Hult., were collected from wild stands near Fairbanks and subjected to the following treatments: 0 or 125 days of stratification; 24-hr soak in water or 1000 mg·liter-1 gibberellic acid (GA3); alternating (25°/10°C) or constant (21°) temperatures; and germination in darkness or light. After 7 days, germination was best (95.0%) with stratified seeds that were soaked in GA3 and germinated at constant temperatures in the dark. A greenhouse study in which stratified seeds were soaked in water or GA3, sown in a commercial peat and vermiculite seed germination mix, and germinated beneath clear or black plastic confirm ed that germination was highest (64.4%) and most uniform (83.3% filled container cells) with the com bined treatments of GA3 and darkness.

Free access

William J. Carpenter, Eric R. Ostmark, and John A. Cornell

The role of light on phlox germination and radicle emergence was studied. Neither light level nor duration affected total germination (G) percentages, which ranged from 93%. to 98%. Increasing light level and lengthening light duration delayed achieving 50% of final germination (T50) and increased the span in days between 10% and 90% germination (T90 - T10). Increasing light duration from 0 to 24 hours during germination at 0.15 μmol·s-1·m-2 progressively increased T50 from 3.5 to 7.1 days and T90 - T10 from 2.6 to 13.1 days. Similarly, lengthening light duration from 0 to 24 hours at 1.5 μmol·s-1·m-2 light increased T50 from 3.7 to 10.8 days and T90 - T10 from 2.8 to 13.4 days, whereas 15 μmol·s -1·m-2 increased T50 from 3.9 to 21.9 days and T90 - T10 from 2.9 to 29.2 days. Increasing the number of days in darkness from 0 to 6 decreased T50 from 14.8 to 4.3 days and T90 - T10 from 20.2 to 3.5 days. Increasing the number of days in light from O to 6 increased T50 from 4.0 to 8.9 days and T90 - T10 from 3.8 to 8.2 days. Estimated rates of decline or increase in T50 and T90 - T10 with each added day in darkness or light were measured by fitting regression equations. Seeds germinated in continuous darkness or in 24 or 48 hours of light followed by total darkness had similar G, T50, and T90 - T10. The results indicate that initial phlox seed germination was not affected by light, but that light inhibited radicle extension in later germination stages.

Free access

S.M. Scheiber, Carol D. Robacker, and M.A. Dirr

Flowering evergreen shrubs that are compact and resistant to pests are in great demand in the nursery and landscape industries. The genus Abelia contains 30 species that vary in many traits including flower color, growth habit, and hardiness. Abelia × grandiflora (Andre) Rehd. and its cultivars are the most widely grown Abelia taxa and are characterized by pest resistance, an abundance of pinkish white flowers, long flowering period, and glossy evergreen foliage. Interspecific hybridization among Abelia × grandiflora, its cultivars, and other species in the genus Abelia offer the potential for new cultivars; however, seed germination within the genus has been described as slow and inconsistent. Experiments were conducted to test procedures to increase germination percentages and rates. Each Abelia seed is enclosed in a leathery achene. The effect of achene removal was examined in combination with cold, moist stratification for 60 days at 4 °C, immersion in 100 ppm gibberellic acid for 24 h, and no treatment. Treatments were replicated five times with 15 seeds per replication. Seeds were sown on sphagnum peat, and grown under mist in the greenhouse. Weekly germination counts were recorded for 8 weeks. Seeds with attached achenes germinated at a significantly higher percentage than those without achenes. Cold, moist stratification and gibberellic acid treatments were not significantly different than the control. No significant differences were found within the achene treatments for relative rate of emergence, but significant differences were found for the time until 90% of final emergence was reached.

Free access

Marvin L. Baker

Fermentation and other seed pregermination treatments of Mayhaw [Crataegus opaca (1.) Hook and Arn-Series Aestivales] (Vines,; Phipps, 1988) were evaluated as potential requirements to increase germination percentages. Low seed germinability and arratic seedling emergence are major problems in Crataegus breeding. Freshly harvested fermented open-pollinated seed from 5 different Mayhaw selections averaged 93.4% at 8 days fermentation and 92.8% at 4 days fermentation. Frozen fruit stored from these 5 selections and later fermented 12 days showed the following higher percentages of germination: frozen storage for 10 days - 87.2% (<4 days fermentation (df); frozen storage for 20 days - 83.8% (<4 days df; frozen storage for 30 days - 74.4% (<8 df; frozen storage for 40 days - 72.6% (<4 df; frozen storage for 60 days - 70.2% (<4 df and frozen storage for 90 days - 60.8% (< 8 df. Positive responses to short fermentation durations (<8 days) were observed, but longer fermentation durations were deleterious. Embryo dormancy requiring acid treatment or stratification and problems with germination inhibiting substances were minimized by fermenting fresh ripened fruit containing large embryos. The fruits and seed were not allowed to dry and they were either prepared immediately or frozen for later use.