Search Results

You are looking at 71 - 80 of 509 items for :

  • "heat stress" x
  • Refine by Access: All x
Clear All
Free access

Leslie A. Blischak and Richard E. Veilleux

Gamete selection was examined as a breeding tool in developing Phalaenopsis hybrids that are more extreme temperature tolerant. Four pairs of hybrid cultivars were cross-pollinated, and then exposed to two temperature extremes, 30 °C/25 °C and 14 °C/9 °C, during initial pollen tube growth. One of each pollinated orchid cultivar was placed in either of two growth chambers and exposed to an 11-hour photoperiod with an irradiance of 180 mmol·m-2·s-1 and a relative humidity of 70% for 3–7 days. The capsules were collected after 150 days. Protocorm development was evaluated after 73 days on a thermogradient table ranging from 10 to 30 °C. For cold-pollinated seeds, protocorm development was optimum at 22 and 28 °C (means of 290 and 250 protocorms per plate, respectively), whereas the greatest protocorm development for warm-pollinated seeds occurred at 20 °C (103 protocorms/plate). Protocorms were evaluated for leaf and root formation 125 days after initial plating. Transfer to warm or cold incubators occurred as seedlings matured. One year after the initial plating, seedlings were evaluated on the following criteria: weight, number of leaves, leaf width, leaf length, leaf area, number of roots, and root length. The pollination treatment significantly affected the number of roots per seedling, whereas table position during germination significantly affected weight. The weight, number of leaves, and average root length were significantly affected by the pollination treatment and incubator interaction. The interaction between pollination treatment and table position significantly affected weight, number of roots, and average root length. Additional replication is required to confirm the greater germinability of cold-pollinated seed at higher temperatures.

Free access

J.L. Lyles, J.D. MacDonald, and D.W. Burger

Roots of hydroponically grown Hibiscus Rosa-sinesis L. cuttings were exposed to 22, 30, 40, or 50C for 20 minutes, after which they were inoculated with zoospores of Phytophthora parasitica Dastur. Visual assessment of root discoloration and culturing of randomly selected root pieces 10 to 13 days after treatment showed that roots exposed to 40 or 50C had a significantly higher incidence of infection than those exposed to 20 or 30C. Plants were also grown in pots containing University of California (UC) mix or washed, graded sand and exposed to solar radiation for 1 day or 3 weeks, respectively. Root systems of plants in direct sunlight heated to 52C, while roots of shaded plants heated to 40C. Assessment of infection severity was done visually or by means of a Phytophthora-specific antibody probe. In all experiments, infection severity was highest in sun-exposed plants and was insignificant to moderate in shaded plants.

Free access

Seenivasan Natarajan* and Jeff S. Kuehny

The demand for new and/or improved herbaceous annuals and perennials continues to increase, making information on production and viability of these plants a necessity. In Louisiana and the Southern U.S., one of the greatest impediments to production of marketable herbaceous plants and their longevity is high temperature. Herbaceous plants have various stages of vegetative growth and flowering; high temperatures during these developmental stages can have a tremendous impact on plant metabolism, and thus plant growth and development. The goal of this research was to better understand the differences between heat tolerant (HT) and heat sensitive (HS) species and cultivars at various high temperatures in terms of whole plant growth, flowering, photosynthesis, carbohydrate content, electrolyte leakage, chlorophyll content and plant small heat shock proteins (HSP) expression levels. Salvia splendens Vista Series (HT), Sizzler series (HS); Viola witrokiana `Crystal Bowl Purple' (HT), `Majestic Giant Red Blotch' (HS), F1 Nature Series (HT) and F1 Iona Series (HS); Gaillardia × grandiflora `Goblin' (HT) and Coreopsis grandiflora `Early Sunrise' (HS) were grown from seed in growth chambers under 25/18 °C (day/night) cycles. Plants at 4, 6, and 8 weeks after germination were subjected to different high temperature treatments of 25 (control), 30, 35, 40, and 45 °C for 3 h. Results show that there was a significant difference in net photosynthesis, electrolyte leakage, soluble carbohydrate content and HSP levels between HT and HS cultivars. Effects of high temperature on plant growth, chlorophyll content, and number of days to flower, flower size, and marketable quality were also significantly different.

Free access

H.Y. Hanna

Black polyethylene mulch is preferred for producing early spring tomatoes (Lycopersicon esculentum Mill.) because of its warming effect on the soil around the roots. However, using the same mulch for double-cropping cucumbers (Cucumis sativus L.) with tomatoes is considered by some growers to be undesirable because of the belief that heat accumulation under the mulch in midsummer or early fall is detrimental to cucumber yield. Eight studies were conducted from July to September in 1994, 1995, and 1996 to determine the effects of mulching spring tomatoes with black vs. white polyethylene mulch on the growth and yield of subsequent cucumber crops. Soil temperature recorded after planting cucumbers ≈4:00 pm for 3 weeks was higher under black mulch than under white mulch. Color of the mulch did not affect leaf length, leaf width, and plant dry weight of cucumbers in six of the eight studies. Cucumbers grown on black mulch produced longer leaves in one study and wider leaves in two studies, and plant dry weight was lower in two studies. Mulch color had no significant effect on the premium or total yields of cucumbers in all but one study. Cucumbers grown on black mulch produced lower percentages of culls in two studies.

Free access

Jeffrey A. Anderson

`Early Calwonder' pepper (Capsicum annuum L.) and `Jubilee' corn (Zea mays L.) leaf disks exposed to high temperature stress produced ethylene, ethane, methanol, acetaldehyde, and ethanol based on comparison of retention times during gas chromatography to authentic standards. Methanol, ethanol, and acetaldehyde were also identified by mass spectroscopy. Corn leaf disks produced lower levels of ethylene, ethane, and methanol, but more acetaldehyde and ethanol than pepper. Production of ethane, a by-product of lipid peroxidation, coincided with an increase in electrolyte leakage (EL) in pepper but not in corn. Compared with controls, pepper leaf disks infiltrated with linolenic acid evolved significantly greater amounts of ethane, acetaldehyde, and methanol and similar levels of ethanol. EL and volatile hydrocarbon production were not affected by fatty acid infiltration in corn. Infiltration of pepper leaves with buffers increasing in pH from 5.5 to 9.5 increased methanol production.

Free access

A.M. Shirazi, L.H. Fuchigami, and T.H.H. Chen

Ethylene production in stem tissues of red-osier dogwood (Cornus sericea L.) following heat treatment was determined at several growth stages. Ethylene production of heat-stressed stem tissue depended on the stage of development and was a function of the degree of stress. During active growth and early endodormancy, heat stress of stem tissues stimulated ethylene production, reaching a peak at 40C, followed by a steady decrease at higher temperatures. Highest ethylene levels from stressed tissues occurred in May, July, September, and March. Only a trace amount of ethylene was produced during endodormancy to ecodormancy (late October to January) from stressed and nonstressed stem tissues. Applying ACC to stem segments at late endodormancy (December) or applying methionine and IAA to stem segments at maximum endodormancy (November) enhanced ethylene production of both nonstressed and heat-stressed stem tissues. Chemical names used: 1 H- indole-3-acetic acid (IAA); 1-aminocyclopropane-1-carboxylic acid (ACC).

Free access

Susan Lurie and Joshua D. Klein

Mature-green tomato (Lycopersicon esculentum Mill.) fruit, when kept for 3 days at 36, 38, or 40C before being kept at 2C for 3 weeks, did not develop chilling injury, while unheated fruit placed at 2C immediately after harvest did. When removed from 2 to 20C, the heated tomatoes had lower levels of K+ leakage and a higher phospholipid content than unheated fruit. Sterol levels were similar in heated and unheated fruit while malonaldehyde concentration was higher in heated fruit at transfer to 20C. The unheated tomatoes remained green, and brown areas developed under the peel; their rate of CO2 evolution was high and decreased sharply, while ethylene evolution was low and increased at 20C. In contrast, the heat-treated tomatoes ripened normally although more slowly than freshly harvested tomatoes: color developed normally, chlorophyll disappeared, and lycopene content increased, CO2, and ethylene evolution increased to a climacteric peak and K+ leakage increased with time. During prestorage heating, heat-stress ethylene production was inhibited, protein synthesis was depressed, and heat-shock proteins accumulated. There appears to be a relationship between the “heat shock response” and the protection of tomato fruit from low-temperature injury.

Free access

Jeffrey Anderson, Greg McCollum, and Warren Roberts

Electrolyte leakage was used to quantify heat stress injury in `Early Calwonder' pepper (Capsicum annuum L.) leaf disks. Lethal temperatures were estimated from the midpoint of the sigmoidal response curve. An interaction between exposure temperature and duration was observed, with lethal temperatures decreasing linearly from 53 to 46C as exposure duration increased exponentially from 5 to 240 min. Exposure to two 7.5-min periods at 51.5C, interrupted by 4 hours at 21C, resulted in the same injury as a continuous 15-min exposure to 51.5C. Plants grown at 22/20C day/night cycles and held 24 hours at 38/30C had increased their heat tolerance by 3C, 51 to 54C; these plants reacclimated to 52C 48 hours after having been transferred back to 22/20C. Leaf disks acclimated significantly in vitro in 1 hour and were fully acclimated by 4 hours at 38C.

Free access

D. Michael Glenn, Gary J. Puterka, Stephen R. Drake, Thomas R. Unruh, Allen L. Knight, Pedro Baherle, Ernesto Prado, and Tara A. Baugher

Particle film technology is a developing pest control system for tree fruit production systems. Trials were performed in Santiago, Chile, and York Springs, Pa., Wenatchee and Yakima, Wash., and Kearneysville, W. Va., to evaluate the effect of particle treatments on apple [Malus sylvestris (L.) Mill. var. domestica (Borkh) Manst.] leaf physiology, fruit yield, and fruit quality. Leaf carbon assimilation was increased and canopy temperatures were reduced by particle treatments in seven of the eight trials. Yield and/or fruit weight was increased by the particle treatments in seven of the eight trials. In Santiago and Kearneysville, a* values of the fruit surface were more positive in all trials although a* values were not increased in Wenatchee and Yakima. Results indicate that particle film technology is an effective tool in reducing heat stress in apple trees that may result in increased yield potential and quality.

Free access

Tracy L Wootten, John J. Frett, and W. Edwin Kee

In an effort to increase lima bean yields in Delaware, the documentation of lima bean plant development and the comparison of Delaware and California lima bean production was conducted. Delaware lima bean yields have averaged 1905 kg·ha-1 for the last 30 years. California averages 3923-4484 kg·ha-1. Cultivar M-15 is used by both states for production. Plant population density, plant fresh weight, and final yield was greater in California than in Delaware. Although plant populations were the same in 1992, yields remained higher in California than in Delaware. High night temperatures have an adverse affect on lima bean yields. Minimum temperatures from both states were compared. Minimum temperatures from the California planting were greater than the minimum temperatures for the late planting in Delaware.