Search Results

You are looking at 71 - 80 of 824 items for :

  • " Zea mays " x
  • Refine by Access: All x
Clear All
Free access

Jeffrey A. Anderson

`Early Calwonder' pepper (Capsicum annuum L.) and `Jubilee' corn (Zea mays L.) leaf disks exposed to high temperature stress produced ethylene, ethane, methanol, acetaldehyde, and ethanol based on comparison of retention times during gas chromatography to authentic standards. Methanol, ethanol, and acetaldehyde were also identified by mass spectroscopy. Corn leaf disks produced lower levels of ethylene, ethane, and methanol, but more acetaldehyde and ethanol than pepper. Production of ethane, a by-product of lipid peroxidation, coincided with an increase in electrolyte leakage (EL) in pepper but not in corn. Compared with controls, pepper leaf disks infiltrated with linolenic acid evolved significantly greater amounts of ethane, acetaldehyde, and methanol and similar levels of ethanol. EL and volatile hydrocarbon production were not affected by fatty acid infiltration in corn. Infiltration of pepper leaves with buffers increasing in pH from 5.5 to 9.5 increased methanol production.

Full access

Matthew D. Kleinhenz

A total of 21 and 28 standard and experimental varieties of yellow and white se- and sh2-type sweet corn (Zea mays) were planted in 1999 and 2000 in Fremont and Wooster, Ohio, which are separated by 193.1 km (120 miles) and contain different soil types. Data are reported here for a subset of these varieties (eight yellow, two white) showing a consistently high level of use in Ohio and planted in both years. Endosperm types were planted in distinct, parallel experiments separated by a minimum of 79.9 m (262 ft) at each site. A randomized complete block design with four replications per variety (V) per location (L) was used, with measures of 13 production- and market-based variables taken from emergence to 48 hours after harvest. Soluble solids 48 hours after harvest were greater at Wooster than Fremont in the sh2 study. Variety had a significant, independent effect on mean plant and ear height in the se and sh2 study, respectively, although further analysis of year × variety (Y × V) and location × variety (L × V) interactions suggested that V affected additional traits. On average, `Tuxedo' (se) and `HMX6383S' (sh2) had superior com-binations of grower- and consumer-oriented traits. However, varieties with the highest levels of percent emergence and marketable yield tended to have lower levels of soluble solids, regardless of endosperm type. Y × V interactions were primarily due to changes in the magnitude of values for individual varieties in each year, not from changes in their relative ranking. The Y × L × V interaction was significant (P ≤ 0.05) for marketable yield, plant and ear height, and the ratio of ear length to diameter in the se study, but zero variables in the sh2 study. Coefficients of determination (R 2) for selected plant and ear traits were unaffected by location. Overall, R2 values ranged from 0.04 (number of rows of kernels × ear diameter, sh2 study) to 0.83 (shank length × total ear length, sh2 study). These data reinforce that genetics strongly affect key traits in sweet corn and identify two potential top performers. The data also suggest that independent L or L × V effects may be minor relative to V effects, even when locations are separated by moderate distances and contain different soil types. Therefore, including more varieties but fewer sites may be warranted in future variety trials. The data also suggest that 1) ratings of variety performance should be based on objective measures of grower- and market-oriented traits and 2) shank length × total ear length and ear height × plant height relationships may be used to improve the efficiency of future evaluations.

Full access

Stratford H. Kay, Ross B. Leidy, and David W. Monks

Greenhouse studies examined the effects of an aquatic herbicide (fluridone) in irrigation water on four vegetable crops growing on two soils. Tests on Fuquay loamy sand (0.3% humic matter) and Portsmouth fine sandy loam (4.1% humic matter) examined fluridone concentrations ≤250 μg·L−1. Injury to sweet corn (Zea may L.), cucumber (Cucumis sativus L.), bell pepper (Capsicum annum L.), and tomato (Lycopersicon esculentum L.) on these soils varied with soil type and stage of plant growth. Seedlings or new transplants were more susceptible to fluridone damage than older plants. All plants showed more injury on Fuquay loamy sand, which had the lowest humic matter content. Injury to cucumber occurred only to seedlings exposed to 250 μg·L−1 on the Fuquay loamy sand. Bell pepper was the most sensitive crop to fluridone. The “no observed effects level” below which no significant injury of a crop occurred over both soil types and both stages of crop maturity was 5 μg·L−1 for sweet corn, bell pepper, and tomato and 100 μg·L−1 for cucumber.

Free access

T.G. Boucounis, T. Whitwell, and J.E. Toler

Ten crops were evaluated for potential use as field bioassay species for cinmethylin and chlorimuron application rates in two soil types. Cinmethylin injured sweet corn (Zea mays L.) and grain sorghum [Sorghum bicolor (L.) Moench] at concentrations as low as 0.28 kg·ha-1 on either soil type, while broadleaf crops were tolerant. Chlorimuron injured sweet corn, grain sorghum, radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), and watermelon [Citrullis lanatus (Thunb.) Mansf.] at rates ≥ 2.5 g·ha-1, and squash (Cucurbita pepo L.) at rates ≥ 5.0 g·ha-1 on a Dothan sand. In a Congaree silt loam, chlorimuron injured cucumber at rates ≥ 5.0 g·ha-1, sweet corn, watermelon, and squash at rates ≥ 10 g·ha-1, and grain sorghum, radish, and cotton (Gossypium hirsutum L.) at rates ≥ 20 g·ha-1. Soybean and snapbean (Phaseolus vulgaris L.) were tolerant to chlorimuron in both soil types. Cinmethylin activity was not altered by soil type, but with chlorimuron greater crop injury was observed in the Dothan sand than in the Congaree silt loam. Sweet corn and grain sorghum were the most sensitive indicator species to cinmethylin and cucumber was the most sensitive to chlorimuron in both soils. Plant emergence and population alone are not valid indicators for crop tolerance to herbicides. Quantitative measurements such as shoot dry weight were more indicative of crop susceptibility to chlorimuron than plant populations. Chemical names used: exo -1-methyl-4-(1-methylethyl)-2 -[(2-methylphenyl) methoxy]-7-oxabicyclo[2.2.1]heptane (cinmethylin); 2-[[[[(4-chloro-6-methoxy-2-pyrimidinyl)amino] carbonyl]amino] sulfonyl]benzoic acid (chlorimuron).

Free access

Jerald K. Pataky, Jonathan N. Nordby, Martin M. Williams II, and Dean E. Riechers

Some sweet corn (Zea mays L.) hybrids and inbreds can be severely injured by applications of postemergence herbicides. An association was observed between the responses of sweet corn hybrids and inbreds to nicosulfuron and mesotrione, and F2 families derived from a cross of a sensitive (Cr1) and a tolerant (Cr2) sweet corn inbred segregated for response to these two herbicides. These observations prompted us to examine the inheritance of sensitivity in sweet corn to multiple postemergence herbicide treatments with different modes of action and to determine if there was a common genetic basis for cross-sensitivity to these herbicides. The sensitive and tolerant inbreds, progeny in the F1, F2, BC1, and BC2 generations, and BC1S1, BC2S1, F2:3 (S1:2) and F3:4 (S2:3) families were screened for responses to eight herbicide treatments. Based on segregation of tolerant and sensitive progeny and segregation of family responses, our data indicate that a single recessive gene in Cr1 conditioned sensitivity to four acetolactate synthase (ALS)-inhibiting herbicides (foramsulfuron, nicosulfuron, primisulfuron, and rimsulfuron), a 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide (mesotrione), a growth regulator herbicide combination (dicamba + diflufenzopyr), and a protoporphyrinogen oxidase (PPO)-inhibiting herbicide (carfentrazone). Based on highly significant positive correlations of phenotypic responses among BC1S1, BC2S1, F2:3, and F3:4 families, the same gene (or closely linked genes) appeared to condition responses to each of these herbicide treatments. The dominant allele also conditions tolerance to bentazon [a photosystem II (PSII)-inhibiting herbicide] although another gene(s) also appeared to affect bentazon tolerance.

Free access

B.T. Scully, R.L. Beiriger, and E.A. Wolf

Free access

Mark P. Widrlechner and Sharon K. Dragula

Free access

B.T. Scully, J.L. Brewbaker, J.K. Pataky, W.F. Tracy, and M.E. Smith

Free access

David B. Dickinson, John A. Juvik, and Janine R. Shaw