Search Results

You are looking at 61 - 70 of 5,862 items for :

  • high temperature x
  • Refine by Access: All x
Clear All
Free access

William R. Graves and Lorna C. Wilkins

Growth of honey locust (Gleditsia triacanthos var. inermis Willd.) seedlings was studied during exposure to reduced osmotic potential (ψπ) and high temperature in the root zone. Half-sib plants were cultured in solution. Root-zone temperature was increased from ambient (23C) to 35C for 0, 6, 12, or 24 hours·day -l. Within each temperature treatment, solution ψπ of -0.05, – 0.10, and – 0.20 MPa were maintained by additions of polyethylene glycol (PEG) 8000. Root and shoot dry weights decreased with increasing exposure to 35C among seedlings in -0.05-MPa solution and decreased for seedlings in - 0.10- and - 0.20-MPa solutions in all temperature regimes. Growth of epicotyls displayed similar trends, but epicotyls of plants in -0.20-MPa solution were longest with 6 hours·day-l at 35C. Significant interactions between effects of temperature and osmotic regimes indicated that water-stressed honey locust seedlings are relatively insensitive to elevated root-zone temperatures. However, related studies showed that PEG caused reductions in growth that could not be explained by decreases in ψπ and suggested that responses of honey locust to PEG differed from those when drought was imposed by withholding irrigation in an aggregate medium.

Free access

Melita Marion Biela, Gail R. Nonnecke, William R. Graves, and Harry T. Horner

High temperatures are reported to promote day-neutral strawberry (Fragaria ×ananassa) vegetative growth and development and inhibit floral and fruit development, thereby imposing geographic and temporal limitations on fruit production. Day-neutral strawberry response to air temperature has been researched, but specific responses to temperature in the root zone have not. In a 1998 greenhouse experiment, 60 `Tristar' plants were grown hydroponically in a system of individual, temperature-controlled pots. A randomized complete-block design with constant root-zone treatments of 11, 17, 23, 29, and 35 °C and 12 replications were used. Stomatal conductance and transpiration rate were significantly lower for plants at 35 °C, compared with plants at all other temperatures. Leaf area and leaf dry mass of plants at 35 °C were five and four times smaller, respectively, than the combined mean for plants in all other treatments. Leaf area of runner tips was 450 and 44.5 cm2 at 11 and 35 °C, respectively, compared with that of plants at all other temperatures, 1552.1 cm2. Fruit dry mass was 14.5, 21.6, 25.5, 29.0, and 3.96 g per plant at 11, 17, 23, 29, and 35 °C, respectively. Root dry mass was highest at 11 and 17 °C and lowest for plants at 35 °C. The number of flowers, fruit, and inflorescences per plant was reduced at 35 °C, as were individual berry fresh mass and diameter. Overall, `Tristar' growth and development were near optimal at 17, 23, and 29 °C.

Free access

Yao-Chien Chang, Hsiao-Wei Chen, and Nean Lee

Photosynthetic rate is reduced during midday in some crops; this phenomenon has been termed as midday depression (MD). Oncidium also suffers greatly from MD in the summer, resulting in reduced growth and poor flowering quality. Since high radiation usually accompanies high temperature midday in the summer, it is difficult to figure out the key factor that promotes MD. We investigated the photosynthetic activities of Oncidium Gower Ramsey in the following conditions: environment-controlled and nonenvironment-controlled. In a growth chamber that simulated field growth conditions, photosynthesis declined dramatically when the temperature was higher than 32 °C. Photosynthesis was also reduced when photosynthetically active radiation (PAR) exceeded the saturating point of Oncidium. Gower Ramsey, which is about 250 μmol·m-2·s-1. However, the reduction was slight when PAR was under 500 μmol·m-2·s-1. Daily photosynthetic patterns were changed when Oncidium Gower Ramsey was grown under different environments. By regression, we found that MD was not directly associated with PAR within the range of 0–400 μmol·m-2·s-1. By contrast, photosynthesis was significantly reduced when temperature was higher than 32 °C. This explains the observation of greater photosynthetic reduction and earlier occurrence of MD when Oncidium Gower Ramsey was grown in rain-shelter rather than in phytotron and growth chamber, since temperature in the rain-shelter was not controlled, while the others were controlled at 25 °C. When Oncidium Gower Ramsey was moved from 35 °C to 25 °C, the photosynthetic depression was relieved.

Free access

Carlos A. Parera and Daniel J. Cantliffe

`Verina' leek (AIlium porrum L.) seed germination is normally reduced at temperatures > 25C. Leek seeds were primed in aerated solutions (1.5 MPa, 10 days at 15C) of d-mannitol (mannitol), polyethylene glycol-8000 (PEG), KNO, and a nonaerated solution of PEG-8000 (PEG). At high temperatures mannitol, PEG, and PEG significantly enhanced germination percentage relative to KNO, or the control. At constant 30C, the mannitol, PEG, and PEG treatments increased final germination almost 10 times and the coefficient of velocity (COV) was improved compared to KNO, and the control. 10 growth chambers with alternating day/night temperatures (38 to 28C or 32 to 22C, 10 to 14 hours, respectively), primed seeds had significantly higher emergence and a larger COV than the control. In a greenhouse study under good conditions for germination, total emergence of primed and nonprimed seeds was similar; however, mannitol, PEG, and PEG led to a significantly higher COV than the control or KNO, treatments. These controlled-environment results demonstrate that priming leek seeds via mannitol, PEG, and PEG may promote early emergence at high temperature and improve stand uniformity for container transplant production.

Free access

Krista C. Shellie, Robert L. Mangan, and Sam J. Ingle

The objective of this research was to investigate whether a controlled atmosphere established inside a high temperature forced air chamber could enhance the mortality of the most heat-resistant life stage of Mexican fruit fly larvae (Anastrepha ludens Loew) and thereby reduce the amount of time grapefruit (Citrus paradisi Macf.) harvested from Mexican fruit fly-infested regions must be exposed to high-temperature forced air to achieve quarantine security. The mortality of third instar larvae treated on diet was significantly higher after exposure to 1% oxygen or 1% oxygen enriched with 20% carbon dioxide than it was in either air or air enriched with 20% oxygen. Reducing the amount of oxygen in air from 21% to 1% during forced air heating at 46°C, reduced the exposure time required for 100% kill of larvae inside artificially infested grapefruit from 5 hours to 3.5 hours. Inconsistent fruit quality results warrant further study to optimize controlled atmosphere conditions during heating. Based upon relative levels of carbon dioxide inside the grapefruit during heating, fruit respiration during heating in 1% oxygen was lower than during heating in air. Results from this research suggest that reducing the amount of oxygen in a high temperature forced air chamber during heating can reduce the amount of time fruit must be exposed to heat for quarantine security against Mexican fruit fly.

Free access

D.L. Deal, J.C. Raulston, and L.E. Hinesley

Red- and purple-leafed seedlings and clonal material selected for superior color and growth under northern climatic conditions may exhibit progressive color loss and reduced growth rates when exposed to the hot summers and high night temperatures of more southern climates. Studies were conducted to characterize the color loss associated with red-leafed seedlings of Acer palmatum Thunb. (Japanese maple), and to determine to what extent night temperatures affect the dark respiration, growth, and anthocyanin expression of A. palmatum `Bloodgood'. The percentage of seedlings within each of five color classes was determined for five dates from spring to early fall. Significant shifts in class distribution occurred on every evaluation date tested. The class changes contributing the most to these shifts varied with age of leaf material and date. Dark respiration rates increased by 0.09 mg CO2/g leaf dry weight per hour for every 1C rise in temperature, regardless of exposure duration. Dark respiration rates of 0.69 and 1.73 mg CO2/g per hour were found at 14 and 26C, respectively. The greatest amount of growth occurred during weeks 6 through 8 at a night temperature of 14C. Plant growth during this period increased by an average 51%, compared to that at warmer night temperatures. Ultimately, total plant growth at 14C decreased 7%, 19%, and 32% as night temperatures increased from 18 to 22 to 26C. Leaf redness index values at 14 or 18C were from two to seven times greater than those at warmer night temperatures.

Free access

Nadine Ledesma and Nobuo Sugiyama

The effects of high-temperature stress on pollen viability and in vitro and in vivo germinability were studied in two facultative, short-day strawberries (Fragaria ×ananassa Duch.), `Nyoho' and `Toyonoka.' Plants were exposed to two day/night temperature regimes of either 23 °C/18 °C (control) or 30 °C/25 °C (high temperature) from when the first inflorescence became visible until anthesis. Pollen viability in `Nyoho' was only slightly affected at 30 °C/25 °C when compared with pollen from plants grown at 23 °C/18 °C. In `Toyonoka', however, pollen viability was significantly lower at 30 °C/25 °C than at 23 °C/18 °C. The in vitro germination percentages were significantly lower in pollen from plants grown at 30 °C/25 °C and germinated at 30 °C than from plants grown at 23 °C/18 °C and germinated at 23 °C in both cultivars. But the percentages were much lower in `Toyonoka' than in `Nyoho', particularly at the 30 °C germination temperature. Pollen from plants grown at 23 °C/18 °C also extended longer pollen tubes than pollen grown at 30 °C/25 °C in both cultivars, but `Nyoho' had longer pollen tubes than `Toyonoka' at 30 °C/25 °C. Fluorescence microscopy revealed that most of the `Nyoho' pollen germinated on the stamen, elongated through the style and reached the ovule regardless of temperature treatment. In `Toyonoka', pollen germination and elongation were greatly inhibited at 30 °C/25 °C, resulting in unfertilized ovules. These results suggest that certain strawberry cultivars produce heat-tolerant pollen, which in turn could result in higher fruit set.

Free access

Margaret Mnichowicz, Janice Coons, and John McGrady

Lettuce (Lactuca sativa L.) seed germination is inhibited at temperature higher than 25-30C. The extent of this inhibition varies between seed lots. Our objective was to determine how the season during which seed develops affects the ability of seeds to germinate and establish a stand at high temperatures. Lettuce seed, `Empire', was produced during 2 summers and 2 winters (1988 and 1989) in Yuma, AZ. These seeds were germinated at 20, 25, 30 or 35C in petri dishes or in growth pouches to determine percent germination or root lengths, respectively. Electrical conductivity of seed leachates was measured. Field emergence of seeds was tested with early fall plantings in Yuma, AZ. Percent seed germination was greater and root lengths were longer for the seeds produced in summer than in winter. Conductivity will be correlated with relative tolerance to high temperatures of the different seed lots. In the field, percent emergence of seed lots from summer and winter averaged 60% and 38%, respectively.

Free access

Margaret Mnichowicz, Janice Coons, and John McGrady

Lettuce (Lactuca sativa L.) seed germination is inhibited at temperature higher than 25-30C. The extent of this inhibition varies between seed lots. Our objective was to determine how the season during which seed develops affects the ability of seeds to germinate and establish a stand at high temperatures. Lettuce seed, `Empire', was produced during 2 summers and 2 winters (1988 and 1989) in Yuma, AZ. These seeds were germinated at 20, 25, 30 or 35C in petri dishes or in growth pouches to determine percent germination or root lengths, respectively. Electrical conductivity of seed leachates was measured. Field emergence of seeds was tested with early fall plantings in Yuma, AZ. Percent seed germination was greater and root lengths were longer for the seeds produced in summer than in winter. Conductivity will be correlated with relative tolerance to high temperatures of the different seed lots. In the field, percent emergence of seed lots from summer and winter averaged 60% and 38%, respectively.

Free access

James E. Faust and Royal D. Heins

Poor lateral branching sometimes occurs when certain poinsettia (Euphorbia pulcherrima) cultivars are pinched. Two experiments were conducted to determine the effect of high temperatures on axillary bud development. In Expt. 1, `Red Sails' plants were grown in a high-temperature environment (HTE) of 27°C at night (8 hr) and 30°C (3 hr), 33°C (10 hr), and 30°C (3 hr) in the day for two months, then transferred to a 20°C environment. In Expt. 2, plants grown at 20°C were transferred into the same HTE described above for 0, 2, 4, 8, 16, or 32 days and were then moved back into the 20°C environment. Axillary buds were examined for viability at the end of each experiment. In Expt. 1, only 8% of the lateral buds forming in the HTE were viable, while 80% of the buds forming in leaf axils of leaves unfolding after the plants were transferred to the 20°C environment were viable. In Expt. 2, 80% of buds produced in axils of the first four leaves to unfold after the start of the experiment were viable in all the treatments. However, the percentage of viable buds in the axils of leaf numbers 5 to 8 was 100, 100, 100, 96, 56, and 0 for the plants placed in the HTE for 0, 2, 4, 8, 16, and 32 days, respectively. These data indicate day temperatures of 30 to 33°C adversely affect lateral shoot development of `Red Sails' poinsettia.