Search Results

You are looking at 61 - 70 of 240 items for :

  • Rubus idaeus x
  • Refine by Access: All x
Clear All
Free access

John R. Clark and James N. Moore

Seeds of 25 blackberry (Rubus spp.), five red raspberry (R. idaeus L.), and two black raspberry (R. occidentalis L.) populations that had been stored for 22 to 26 years were planted in the greenhouse to evaluate their germination. Germination ranged from 0% to 84% among all populations. Thorny and thorny × thornless blackberry populations had the highest average germination; most populations had >40% germination. Thornless blackberry populations ranged from 1% to 16% germination. The seeds of two of the five red raspberry populations did not germinate and none of the black raspberry seeds germinated.

Free access

Shiow Y. Wang and Hsin-Shan Lin

Fruit and leaves from different cultivars of thornless blackberry (Rubus sp.), red raspberry (Rubus idaeus L.), black raspberry (Rubus occidentalis L.), and strawberry (Fragaria × ananassa D.) plants were analyzed for total antioxidant capacity (oxygen radical absorbance capacity, ORAC) and total phenolic content. In addition, fruit were analyzed for total anthocyanin content. Compared to fruit, leaves were found to have higher ORAC values. In fruit, ORAC values ranged from 7.8 to 33.7 μmol Trolox equivalents (TE)/g of fresh berries, while in leaves, ORAC values ranged from 20.8 to 45.6 μmol TE/g of fresh leaves. Fruit harvested at different stages of maturity were analyzed in blackberries, raspberries, and strawberries. Blackberries and strawberries had their highest ORAC values during the green stages, while raspberries generally had the highest ORAC activity at the ripe stage (with exception of cv. Jewel, a black raspberry). Total anthocyanin content increased with maturity for all three fruit. There was a linear correlation existed between total phenolic content and ORAC activity for fruit and leaves. For ripe berries, there was also a linear relationship between ORAC values and anthocyanin content. Of the ripe fruit and leaves tested, raspberry plants appeared to be the richest source for antioxidants.

Free access

Johanne C. Cousineau and Danielle J. Donnelly

Isoenzyme staining was used to characterize 55 of 78 raspberry cultivars (Rubus idaeus L., R. × neglectus Peck, and R. occidentalis L.). Six enzymes were needed to achieve this characterization: isocitrate dehydrogenase, malate dehydrogenase, phosphoglucoisomerase, phosphoglucomutase, shikimic acid dehydrogenase, arid triose phosphate isomerase. The 23 cultivars that were not uniquely characterized were grouped into eight groups of two and two groups of three and four. Two of these groups comprised black raspberry cultivars, all of which were similar isozymically. Isoenzymes could not distinguish between the cultivar Willamette and a spine-free mutant of the cultivar. Analysis of cultivars obtained from several sources revealed that raspberry cultivar mislabeling exists but is not very prevalent. Regular isoenzyme analysis of raspberry cultivars held by germplasm repositories, certified and other propagators, and breeders is both feasible and advisable for early detection of cultivar mislabeling.

Free access

JoAnn Robbins and Patrick P. Moore

Fruit weight and morphological characteristics of `Meeker' red raspberry (Rubus idaeus L.) fruit, including drupelets (height, diameter, number), receptacle cavities (depth, diameter), and pits (individual weight) were measured five times in 1988. Fruit strength, as measured by compression, was recorded. The relationship of fro-it weight to fruit strength had linear and quadratic components. Fruit weight was correlated with fruit strength, drupelet height and number, receptacle cavity depth and diameter, and individual pit weight. Besides fruit weight, fruit strength was correlated with drupelet diameter and number, receptacle cavity depth, and individual pit weight. Drupelet number, receptacle cavity depth, and individual pit weight provided the largest component contribution to fruit strength, as determined by path analysis.

Free access

Annette M. Zatylny, J.T.A. Proctor, and J.A. Sullivan

Two selections and two cultivars of red raspberry (Rubus idaeus L.) were evaluated for cold hardiness in vitro. Tissue-cultured shoots were exposed to temperatures from 0 to –18C and samples were removed at 2C intervals. Injury was assessed by a visual rating of tissue browning after freezing. Only shoots subjected to step-wise acclimation at low temperatures before freezing revealed significant differences among the four types in the lowest shoot survival temperature. Acclimation treatments increased the lowest survival temperatures of in vitro shoots by a mean of 3.1C. The hardiness obtained from this screening method agreed with that of winter survival in the field. Ranking, from the most to least cold hardy, was `Boyne', Gu 72, Gu 63, and `Comox'.

Free access

Pauliina Palonen, Danielle Donnelly, and Deborah Buszard

Low tissue-water content and increased osmotic concentration of cell sap are associated with frost resistance. Changes in total osmotic concentration of cell sap are due mainly to changes in concentration of sugars. Generally, sugar content increases with hardening and decreases with dehardening. This study examined the effect of elevated sucrose levels (3% to 15%) in the medium on the cold hardiness of `Festival' red raspberry (Rubus idaeus L.) shoots in vitro. To determine whether expected hardening is caused by elevated sucrose levels or by osmotic stress, different levels of mannitol in the media have been tested. After growing raspberry shoots on media with different levels of sucrose and mannitol for 2 weeks, shoot moisture content (percent) was determined. Cold hardiness of the shoots was determined by using differential thermal analysis or artificially freezing the shoots and assessing the survival by regrowth test and visual rating.

Free access

Pat Bowen and Stan Freyman

Raspberries (Rubus idaeus L.) were grown for 5 years with three floor management treatments: clean cultivation (CC) and ground covers of white clover (Trifolium repens L.) (WC) and perennial ryegrass (Lolium perenne L.) (PR). Primocane growth was strongest with WC and weakest with PR. Fruit production did not differ between WC and CC treatments and was higher than with PR. On 22 Aug. and 10 Sept. in the last year, primocanes grown with WC were taller, had more nodes and a higher dry weight, contained more N, and had retained more leaves than those grown with PR. Net CO2 assimilation per unit leaf area was higher with WC than with PR, and the difference was greater at the more proximal position. The estimated net CO2 assimilation rate per primocane was more than twice as high with WC than with PR.

Free access

M.A. Ellis and S.A. Miller

A commercially available serological assay kit (flow-through enzyme-linked immunosorbent assay, Phytophthora F kit) was compared to a culture-plate method for detecting Phytophthora spp. in apparently diseased (phytophthora root rot) and apparently healthy red raspberry (Rubus idaeus subsp. strigosus Michx.) plants. During 4 years of testing, 46 tests were conducted on apparently diseased roots. All diseased plants gave a strong positive reaction, a result indicating that Phytophthora spp. were present. Of the 46 plants that tested positive, Phytophthora spp. were recovered from all but one using a selective medium for Phytophthora and the culture-plate method. When the same test was conducted on 27 apparently healthy plants, all had a negative reaction for the presence of Phytophthora except one sample, which had a slight positive reaction. No Phytophthora spp. were isolated from any apparently healthy plants. Our results indicate that the serological test kit enables rapid, dependable, on-site diagnosis of raspberry phytophthora root rot.

Free access

Patrick P. Moore

Harvest data from the first and second harvest seasons were compared for 264 plots in six red raspberry (Rubus idaeus L.) plantings established from 1987 to 1992 to determine year-to-year consistency of harvest data. Midpoint of harvest had the largest correlation coefficient (r = 0.81, n = 264), followed by fruit mass (r = 0.76) and fruit firmness (r = 0.47). The relationship between the first and second harvest seasons was weaker for yield (r = 0.33) and percent fruit rot (r = 0.24). Basing the correlation coefficients on genotype means did not greatly improve the consistency of data. Inconsistency of harvest data suggests that selections should not be discarded because of low yields after a single harvest season but should be evaluated for at least 2 years.

Free access

David C. Percival, John T.A. Proctor, and J. Alan Sullivan

Field experiments consisting of trickle irrigation (TI), IRT-76 plastic film (PF), and straw mulch were initiated to determine the influence of soil temperature and water status on carbon partitioning during the establishment of Rubus idaeus L. `Heritage' (1993, 1994), `Autumn Bliss' (1994), and `Summit' (1994) micropropagated raspberries. Environmental, vegetative, reproductive, and nutrition data were collected. Photosynthesis (Pn) measurements were recorded under field conditions using a Li-Cor LI-6200 portable photosynthesis system. Neither node number nor shoot: root ratio was influenced by TI, PF, or straw mulch. PF, however, increased root and shoot weight, total flowers produced, total berries harvested, and foliar N and P. Although differences existed among cultivars, field Pn measurements indicated that, regardless of groundcover treatment or cultivar examined, the maximum Pn rate occurred at a root-zone temperature of 25C. Hence, results from this study indicate that conditions in both the air and root zone physical environment regulate carbon assimilation and partitioning.