Search Results

You are looking at 61 - 70 of 147 items for :

  • Refine by Access: All x
Clear All
Free access

Theresa Bosma, John Dole, and Niels Maness

Marigold flower pigments can be extracted and used as a natural source of food colorants in the poultry and dairy industry. These pigments impart an orange color to egg yolks and a yellowish color to dairy products. We examined four African marigold cultivars for their ability to be commercially grown and harvested mechanically. `E-1236' yielded the highest quantity of lutein (22 kg/ha), a carotenoid pigment, using a spectrophotometer for quantification. `E-1236' and `A-975' were the earliest flowering cultivars, 11 June 1998 for transplants and 9 July 1998 for direct-seeded, at 8 weeks after sowing regardless of field establishment method. `E-1236' produced the greatest number of flowers in a production season, both as transplants (68 flowers/plant) and direct-seeded (57 flowers/plant) at 363,290 plants/ha. Transplants resulted in two more harvests in a single season than direct-seeded plants. Subsequently, more flowers and petal material were produced for pigment extraction than with direct-seeded plants. A one-time application of ammonium nitrate (28.02 kg/ha) at mid-season did not significantly effect flower number, flower weight, or pigment yield. Experiment was repeated in 1999 with four cultivars, two field establishment methods, seven harvest dates, and five nitrogen applications.

Free access

Alexis M. Barbarin, Frank J. Williams, Greg T. Bettmann, Donald P. Hauber, and Harish H. Ratnayaka

'Knowledge of constitutive levels of gas exchange and antioxidant properties under unstressed conditions is critical for elucidating their potential roles in stress tolerance, planning cultural practices, and evaluating nutritional quality of vegetable crops. This greenhouse study reports gas exchange, photosystem II efficiency, and pigment and antioxidant profiles of two spinach cultivars [SpinaciaoleraceaL., cvs. Bloomsdale Long Standing (Bloomsdale) and Hybrid Tyee (Tyee)] with contrasting morphology. `Bloomsdale', the cultivar with more compact stature and larger leaves, had 47% greater photosynthesis (P net) than `Tyee'. Stomatal conductance (g s) and transpiration (E) were 94% and 46% greater in `Bloomsdale' than `Tyee', respectively. However, photosystem II efficiency (F v'/F m') was only 8% greater in `Bloomsdale' than `Tyee'. Instantaneous water use efficiency was similar in both cultivars. `Bloomsdale' had nonsignificantly greater concentrations of chlorophylls a and b, lutein, β-carotene and violaxanthin than `Tyee'. Both cultivars had similar, marginal α-tocopherol concentrations (<0.1 ng·g-1 FW). However, `Tyee' had a greater chlorophyll a:b ratio which, combined with lower g s and E, suggests a possible advantage for `Tyee' over `Bloomsdale' under relatively dry and high light conditions. Further studies must be conducted to compare nutritional quality of the two cultivars, based on constitutive levels of pigments and antioxidants. Greater gas exchange activity in `Bloomsdale' than `Tyee' appears to be due more to CO2 acquisition/metabolism than photosystem II efficiency or concentrations of pigments and antioxidants.

Free access

J.A. Kirkpatrick, T.E. Morelock, L.R. Howard, and F.J. Dainello

Fresh-market spinach production has risen in the United States in the past few years as well as total value of the crop. Increased crop value may be attributed to more “value added” spinach products being produced and marketed. Public awareness of nutrition is rising due to more information being distributed concerning cancer prevention, antioxidants, and neutraceuticals. Spinach is high in the carotenoids beta-carotene and lutein, a known antioxidant for the prevention of age-related macular degeneration (AMD). It is also high in vitamins A, C, E, and folate, fiber, and the mineral iron. In this respect, spinach producers have an advantage over growers of salad vegetables such as lettuce. While this is an advantage, more innovative “value added” methods of marketing this product to the consumer are needed. A dark-green, semi-savoy spinach type developed at the Univ. of Arkansas was studied to determine shelf-life and storage capabilities of root cut plants in transparent clamshell containers. Plants were held at temperatures ranging from 1 to 6 °C. Leaf turgidity and visual characteristics were rated on a 1 to 5 scale. Acceptable characteristics and shelf-life of spinach stored in clamshell containers were seen up to 14 to 21 days when plants were stored at or near 1 °C. These results indicate that spinach packaged in transparent clamshell containers will maintain an acceptable shelf-life and could be beneficial to fresh market spinach producers.

Free access

Dean A. Kopsell, David E. Kopsell, and Joanne Curran-Celentano

Therapeutic compounds in herbal crops are gaining recent attention. Sweet basil (Ocimumbasilicum L.) is a popular culinary herbal crop grown for both fresh and dry leaf markets. Recently, basil (unidentified cultivar) was shown to rank highest among spices and herbal crops for xanthophylls carotenoids. This class of carotenoids is associated with decreased risks of certain cancer and age-related eye diseases. The research goal for the current study was to characterize the concentrations of nutritionally important carotenoid pigments among popular varieties of basil. Eight cultivars of sweet basil (`Genovese', `Italian Large Leaf', `Nufar', `Red Rubin', `Osmin Purple', `Spicy Bush', `Cinnamon', and `Sweet Thai') were grown in both field and greenhouse environments and evaluated for plant pigments using HPLC methodology. Environmental and cultivar differences were significant for all of the pigments analyzed. `Sweet Thai' accumulated the highest concentrations of lutein, zeaxanthin, and beta-carotene carotenoids, while `Italian Large Leaf' had the lowest concentrations. Comparing the two environments, cultivar means for carotenoid and chlorophyll pigments were higher in the field environment when expressed on both a fresh and dry weight basis. Exceptions were found only for the purple leaf basils (`Osmin Purple' and `Red Rubin'). Positive and highly significant correlations existed between carotenoid and chlorophyll pigments in both environments. This study demonstrates that sweet basil can accumulate high levels of nutritionally important carotenoids in both field and greenhouse environments.

Free access

Catherine Nicolle, Gérard Simon, Edmond Rock, Pierre Amouroux, and Christian Rémésy

Carrot (Daucus carota L.) is ranked among vegetables as the most consumed and the best provitamin A provider. Moreover, carrot also contains vitamins, phenolic compounds, and other antioxidant micronutrients. The influence of carrot genetic background on the content of several micronutrients was investigated. Carotenoids and vitamins (C and E) were analyzed by HPLC in 20 varieties of carrot, and antioxidant activity of carrots was investigated with colorimetric methods (ORAC and Folin-Ciocalteu). There were large differences among cultivars in carotenoid content (0.32 to 17 mg/100 g of fresh weight). In yellow and purple carrots, lutein represents nearly half of the total carotenoids. By contrast, in orange carrots, β-carotene represents the major carotenoid (65%). The concentration of vitamin E ranged from 191 to 703 μg/100 g of fresh weight, whereas the concentration in ascorbic acid ranged from 1.4 to 5.8 mg/100 g. For all these components, dark-orange carrots exhibited the highest values. Significant differences among these 20 varieties were also recorded for mineral and total phenolic compound concentrations. Purple and dark-orange carrots could be preferred to usual carrot varieties to benefit from their specific micronutrients (anthocyanins, carotenoids, or vitamin E). ORAC is a complex reflection of phytomicronutrients but is not tightly linked to vitamin C levels, as shown for white carrots, which are rich in this vitamin.

Open access

Calen McKenzie, Ivette Guzman, Ciro Velasco-Cruz, and Paul W. Bosland

carotenoid separation method, with adjustments to improve the separation of lutein and Chl b (Richins et al., 2014). Under yellow lights, dried extracts were resuspended in 4.0 mL HPLC-grade isopropanol (Sigma-Aldrich) and sonicated at room temperature for 5

Free access

Tyann Blessington, Douglas C. Scheuring, and J. Creighton Miller Jr.

Potatoes are stored to ensure a continuous supply; however, losses due to shrinkage and sprouting can be large. It is believed that ionizing irradiation will become more prominent for sprout inhibition due to the increasingly higher operating costs of low-temperature storage and possible phase-out of chemical sprout inhibitors. The effects of storage and ionizing irradiation (gamma and electron beam) on antioxidant activity (AOA), phenolic content, and carotenoid content were analyzed using the potato cultivar Atlantic. Tubers were subjected to 0, 75, and 200 Gy γ-irradiation doses, stored at 20 °C, and analyzed after 0, 10, 20, 75, and 110 days. Tubers from another harvest were subjected to a surface dose of 0 or 200 Gy e-beam irradiation, stored at 20 °C, and analyzed after 0, 10, 20, 75, and 110 days. AOA was measured via the DPPH method; phenolic content via the Folin-Ciocalteau method and individual phenolics via HPLC; and carotenoid content via absorbance at 445 nm and individual carotenoids via HPLC. During early storage, higher doses resulted in higher AOA, while, during longer storage, lower doses produced greater AOA. Phenolic content increased in storage during the γ-irradiation study, but decreased in the e-beam study, partly due to increases in chlorogenic acid in the former and decreases in caffeic acid in the latter. The e-beam dose of 200 Gy resulted in significantly greater total phenolics than 0 Gy. Total carotenoids and lutein decreased with storage, but were not affected by irradiation. Storage exerted a much greater influence on AOA, phenolic content, and carotenoid content than either irradiation treatment.

Free access

W.Y.L. Poon and I.L. Goldman

The rp allele causes a significant reduction in total carotenoid pigmentation in carrot (Daucus carota L.) roots. The objective was to investigate the effect of rp on the composition, accumulation, and retention of carotenoids in two near-isolines of carrot, W266RPRP and W266rprp, during vegetative growth and postharvest storage. Field experiments were conducted during 1996 and 1997 in which roots were sampled weekly from 62 to 100 days after seed-sowing and biweekly during postharvest storage at 4 °C up to 386 days after sowing. Linear increases in total carotenoid concentration were observed for W266RPRP and W266rprp during vegetative growth. The average daily rate of increase in total carotenoid concentration in W266RPRP and in W266rprp was 12.7 and 1.3 mg·g-1 dry weight, respectively. A linear decrease in carotenoid concentration was measured for W266RPRP but not for W266rprp during postharvest storage. At 100 days after sowing, high-performance liquid chromatography analyses showed W266rprp had 20-fold lower concentrations of a-carotene and 50-fold lower concentrations of β-carotene in root tissue compared to W266RPRP. Levels of β-carotene and lutein in the first true leaves were reduced by ≈50% in W266rprp compared to W266RPRP. Results from this investigation suggest that the rp allele affects the concentration of root and foliage carotenoids, as well as the rate of carotenoid accumulation and degradation in carrot roots. The impact of the rp allele is far greater in root tissue than in foliage, suggesting it may act as a transcription factor or structural gene affecting primarily root carotenoid biosynthesis.

Free access

James Mattheis and David Rudell

Metabolism of peel constituents was assessed during ripening of `Delicious' and `Golden Delicious' apples. The ethylene action inhibitor 1-methylcyclopropene (1-MCP) and/or controlled atmosphere storage (CA) were used to limit ethylene activity during and after storage at 1 °C. `Delicious' apples not exposed to 1-MCP developed a brownish discoloration (not superficial scald) during the initial 2 months of storage in air. LC/MS analyses of peel components indicated 1-MCP and/or CA inhibited the degradation of compounds responsible for red peel color (i.e., idaein) as well as other flavonoids. Ethylene regulation of metabolism of other phenolic and related constituents including (-)epicatechin and chlorogenic acid appears to be compound specific. The (-)epicatechin content is not impacted by 1-MCP or CA, while chlorogenic acid accumulation is reduced in fruit exposed to 1-MCP and/or stored in CA. β-carotene and lutein content in peel of `Delicious' fruit stored in air was lower compared with untreated controls. Chlorophyll degradation was enhanced in air-stored fruit previously exposed to 1-MCP; however, this result was not observed in 1-MCP exposed fruit from CA. Results for `Golden Delicious' apples also indicated that exposure to 1-MCP and CA, as well as storage duration, impacts metabolism of peel constituents. Chlorophyll degradation was delayed in fruit previously exposed to 1-MCP and then stored in CA. Impacts of 1-MCP and storage environment on concentrations of other `Golden Delicious' peel constituents increased with storage duration. The results indicate metabolism of apple fruit peel constituents during fruit ripening is differentially regulated by ethylene.

Free access

Penelope Perkins-Veazie*, J.K. Collins, and Warren Roberts

Watermelons contain the carotenoids b-carotene, phytofluene, lycopene, and lutein. These carotenoids play an important role in plant oxidative protection and may serve to protect humans against oxidative assaults. Of the carotenoids, lycopene is the predominant pigment in red-fleshed melons (30-130 μg·g-1), b-carotene is present in small amounts (1-14 μg·g-1), and other carotenoids are present in minute amounts (1-3 μg·g-1). Seventy varieties were screened for lycopene content using scanning colorimetry, spectrophotometry, and HPLC techniques, and grouped as low, medium, high, or very high in lycopene. Pink-fleshed heirloom varieties such as Sweet Princess and Black Diamond contained low amounts of lycopene (<40 μg·g-1). A number of seeded and seedless varieties had medium amounts of lycopene (40-60 μg·g-1). Varieties in the high category (60-80 μg·g-1) were primarily seedless types, although `Dixie Lee', an open-pollinated, seeded variety had 69 μg·g-1, indicating that high lycopene content is not restricted to hybrid or seedless melon germplasm. Six selections were found to be very high in lycopene (>80 μg·g-1), including the minimelon Hazera 6008 (Extazy). Total carotenoids and carotenoid profiles were determined by HPLC for 23 varieties in 2003. Both seeded and seedless type melons had varieties high in bcarotene, lycopene, and total carotenoids. These results indicate that commercial watermelon varieties have a wide range in lycopene and b-carotene content, and that most commercially important varieties are high in lycopene and total carotenoids, providing important sources of phytonutrients to the human diet.