Search Results

You are looking at 61 - 70 of 520 items for :

  • "heat stress" x
  • Refine by Access: All x
Clear All
Free access

John W. Markham III, Dale J. Bremer, Cheryl R. Boyer, and Kenneth R. Schroeder

Heat stress imposed on roots of container-grown plants is an important problem in the nursery industry. In a number of nursery-grown species, substrate temperatures over 30 °C may cause root growth to slow considerably ( Johnson and Ingram, 1984

Free access

Michele A. Stanton, Joseph C. Scheerens, Richard C. Funt, and John R. Clark

fruit set in other crops. For instance, the delivery of abundant, viable pollen was not sufficient to ensure adequate fruit set in heat-stressed tomatoes ( Peet et al., 1997 ). When Brassica napus (L.) plants were exposed to short periods of high

Full access

Joseph Masabni, Youping Sun, Genhua Niu, and Priscilla Del Valle

microclimate in the summer by decreasing leaf temperature and leaf transpiration rate, thus alleviating heat stress ( Aberkani et al., 2008 ). The cultivation area under shade is constantly increasing in Mediterranean countries such as Israel, Morocco, and

Free access

Juan Carlos Díaz-Pérez

( Fig. 2 ) suggest that bell pepper plants were under heat stress, particularly those that were unshaded. Root zone temperature under plastic mulch affects plant growth and yield in several vegetable crops ( Díaz-Pérez et al., 2008 ). Root zone

Free access

Thomas E. Marler and Patrick D. Lawton

Temperature and chlorophyll fluorescence characteristics were determined on leaves of various horticultural species following a dark adaptation period where dark adaptation cuvettes were shielded from or exposed to solar radiation. In one study, temperature of Swietenia mahagoni (L.) Jacq. leaflets within cuvettes increased from ≈36C to ≈50C during a 30-minute exposure to solar radiation. Alternatively, when the leaflets and cuvettes were shielded from solar radiation, leaflet temperature declined to 33C in 10 to 15 minutes. In a second study, 16 horticultural species exhibited a lower variable: maximum fluorescence (Fv: Fm) when cuvettes were exposed to solar radiation during the 30-minute dark adaptation than when cuvettes were shielded. In a third study with S. mahagoni, the influence of self-shielding the cuvettes by wrapping them with white tape, white paper, or aluminum foil on temperature and fluorescence was compared to exposing or shielding the entire leaflet and cuvette. All of the shielding methods reduced leaflet temperature and increased the Fv: Fm ratio compared to leaving cuvettes exposed. These results indicate that heat stress from direct exposure to solar radiation is a potential source of error when interpreting chlorophyll fluorescence measurements on intact leaves. Methods for moderating or minimizing radiation interception during dark adaptation are recommended.

Free access

Juan Carlos Díaz-Pérez

reduced root zone temperature to a value closer to optimal root zone temperature (≈27 °C) for bell pepper compared with unshaded conditions ( Díaz-Pérez, 2013 ). Decreased disease associated with shading may be related to amelioration of heat stress of

Free access

D.W. Heather, J.B. Sieczka, M.H. Dickson, and D.W. Wolfe

Forty hybrid broccoli [Brassica oleracea L. (Italica Group)] accessions were screened for heat tolerance and holding ability over three planting dates in 1988 at the Long Island Horticultural Research Laboratory in Riverhead, N.Y. Holding periods were quantified using the number of consecutive days between the time individual heads reached 10 cm diameter and cutting, which occurred when the sepals had fully expanded and had just begun to separate. In 1989 and 1991, heat stress was applied at various weeks during maturation to determine the most sensitive stage or stages of plant development in terms of reduction in holding period and head weight. Field studies and heat stress experiments indicate that heat stress may be most critical during the time the immature inflorescence measures 5 to 10 mm in diameter. This stage corresponds to ≈ 3 weeks before harvest for summer plantings in the northeastern United States.

Free access

Melyssa K. Davis and Jeff S. Kuehny

Herbaceous perennials are one of the fastest growing ornamental sectors in the United States. Current production recommendations do not address the effect of environmental factors, such as high temperature, on growth of herbaceous perennials. The focus of this research was to determine how supra-optimal temperatures effect growth and photosynthesis. Plants were exposed to a high temperature of 35 °C and photosynthesis measurements were recorded over a 6-week period at 1100, 1300, and 1500 hr. Results indicate that the time of day the measurements were taken made little difference on rate of photosynthesis and that there was a similar trend in photosynthetic rate over the 6-week period. Photosynthesis decreased as the plants began to flower and then increased until the onset of flower senescence. Plants grown at supraoptimal and optimal conditions had a similar trend and rate of photosynthesis throughout the 6-week period. Plant growth significantly decreased as the duration of high temperature increased for both species; however, Gaillardia was more heat tolerant then Coreopsis.

Free access

H.Y. Hanna

Black polyethylene mulch is preferred for producing early spring tomatoes (Lycopersicon esculentum Mill.) because of its warming effect on the soil around the roots. However, using the same mulch for double-cropping cucumbers (Cucumis sativus L.) with tomatoes is considered by some growers to be undesirable because of the belief that heat accumulation under the mulch in midsummer or early fall is detrimental to cucumber yield. Eight studies were conducted from July to September in 1994, 1995, and 1996 to determine the effects of mulching spring tomatoes with black vs. white polyethylene mulch on the growth and yield of subsequent cucumber crops. Soil temperature recorded after planting cucumbers ≈4:00 pm for 3 weeks was higher under black mulch than under white mulch. Color of the mulch did not affect leaf length, leaf width, and plant dry weight of cucumbers in six of the eight studies. Cucumbers grown on black mulch produced longer leaves in one study and wider leaves in two studies, and plant dry weight was lower in two studies. Mulch color had no significant effect on the premium or total yields of cucumbers in all but one study. Cucumbers grown on black mulch produced lower percentages of culls in two studies.

Free access

Jeffrey A. Anderson

`Early Calwonder' pepper (Capsicum annuum L.) and `Jubilee' corn (Zea mays L.) leaf disks exposed to high temperature stress produced ethylene, ethane, methanol, acetaldehyde, and ethanol based on comparison of retention times during gas chromatography to authentic standards. Methanol, ethanol, and acetaldehyde were also identified by mass spectroscopy. Corn leaf disks produced lower levels of ethylene, ethane, and methanol, but more acetaldehyde and ethanol than pepper. Production of ethane, a by-product of lipid peroxidation, coincided with an increase in electrolyte leakage (EL) in pepper but not in corn. Compared with controls, pepper leaf disks infiltrated with linolenic acid evolved significantly greater amounts of ethane, acetaldehyde, and methanol and similar levels of ethanol. EL and volatile hydrocarbon production were not affected by fatty acid infiltration in corn. Infiltration of pepper leaves with buffers increasing in pH from 5.5 to 9.5 increased methanol production.