Search Results

You are looking at 61 - 70 of 275 items for :

  • "cantaloupe" x
  • Refine by Access: All x
Clear All
Open access

W. D. Pew and B. R. Gardner

Abstract

Higher yields, larger fruit size, and earlier maturity were achieved in muskmelons (Cucumis melo L.) by irrigating when soil moisture tensions at the 25-cm depth reached 50 and 75 kPa compared with tensions of 25 kPa. More fruits were culled in the wet treatment due to decay while the drier treatments produced more fruits with growth cracks. Melons from the drier treatments were higher in soluble solids. Irrigation did not affect the other storage and shipping quality factors measured. A prethinning irrigation caused restricted root development, vine growth, fruit size, and yield.

Open access

A. Meiri, G. J. Hoffman, M. C. Shannon, and J. A. Poss

Abstract

The salt tolerance of cultivars of muskmelon (Cucumis melo, L.) was established under 2 levels of radiation in a glasshouse experiment. ‘Galia’ and ‘Top Mark’ muskmelon differed very little in salt tolerance at either radiation level. The maximum electrical conductivity of a saturated soil extract without yield reduction, the salt tolerance threshold, was 2.0 dS m−1. Beyond the threshold, yield was reduced at a rate of 14.3% per unit increase in soil salinity. Both cultivars were more salt-tolerant at the higher level of solar radiation.

Open access

Robert J. Dufault

Abstract

Pretransplanting nutritional conditioning (PNC) regimes were evaluated for their effects on improving tolerance to transplant shock and increasing early fruit production. Muskmelon seedlings (Cucumis melo var. reticulatus L. ‘Magnum 45’) were fertilized twice weekly with solutions containing N, P, and K to determine nutrient needs required to produce high-quality transplants. Seedling height, stem diameter, leaf area, shoot and root dry weights, leaf number, and shoot: root ratios of 27-day-old transplants increased as N rates increased from 10 to 250 mg liter−1. These growth variables also increased with P from 5 to 25 mg·liter−1 but decreased as P increased from 25 to 125 mgliter−1. Increasing K rates from 10 to 250 mg·liter−1 increased seedling height, stem diameter, and leaf area. Nine PNC regimes ranging from low to high N-P-K status were tested under field conditions to determine any long-term advantage. Generally, as PNC levels increased, transplant shock (percentage of necrotic leaves) increased as measured 12 days after transplanting. However, vining, female flowering, fruit set, and early yields increased as PNC levels increased. A high level of PNC (250N-125P-250K, mg·liter−1) conditioned transplants to overcome shock and to resume growth sooner and yield earlier than those at lower PNC levels.

Free access

Guangyao Wang, Mathieu Ngouajio, Milton E. McGiffen Jr, and Chad M. Hutchinson

The effect of summer cover crop and management system on subsequent fall romaine lettuce (Lactuca sativa L.) and spring muskmelon (Cucumis melo L.) growth and yield was evaluated in the Coachella Valley of California from 1999 to 2003. Cover crop treatments included: 1) cowpea [Vigna unguiculata (L.) Walp.] incorporated into the soil in the fall (CPI), 2) cowpea used as mulch in the fall (CPM), 3) sudangrass [Sorghum bicolor (L) Moench] incorporated into the soil in the fall (SGI), and 4) a bare ground control (BG). Management system treatments included: 1) conventional system (CON), 2) integrated crop management (ICM), and 3) organic system (ORG). Cowpea cover crop, either incorporated or used as surface mulch, increased lettuce growth and yield by increasing biomass allocation to lettuce leaf and leaf area growth. Cowpea mulch decreased muskmelon leaf and biomass growth and reduced muskmelon yield. Sudangrass produced more biomass than cowpea and reduced lettuce growth and yield. However, in the following spring, the SGI treatment had the highest muskmelon yield. Lettuce growth was significantly affected by management system, while muskmelon growth at the early stage was unaffected. The organic system reduced both lettuce and muskmelon yield compared with CON and ICM management systems.

Free access

Albert Liptay, Jerry H. Stoller, and Ron Salzman

Root Feed is a product developed by Stoller Enterprises, Inc., to enhance crop productivity and quality. Weekly application of Root Feed in drip-irrigated crops was found to be the most effective frequency of application. Root Feed increased the number of the largest melons and total melons by over 50% and also increased fruit °Brix (soluble solids). Moreover, it was observed that a number of pests were suppressed with Root Feed, namely, whiteflies, a cucurbit virus, and downy mildew.

Free access

Perry E. Nugent

Free access

Krista C. Shellie, Robert D. Meyer, and T. Erik Mirkov

Free access

Robert L. Long, Kerry B. Walsh, David J. Midmore, and Gordon Rogers

A common practice for the irrigation management of muskmelon (Cucumis melo L. reticulatus group) is to restrict water supply to the plants from late fruit development and through the harvest period. However, this late fruit development period is critical for sugar accumulation and water stress at this stage is likely to limit the final fruit soluble solids concentration (SSC). Two field irrigation experiments were conducted to test the idea that maintaining muskmelon plants free of water stress through to the end of harvest will maximise sugar accumulation in the fruit. In both trials, water stress before or during harvest detrimentally affected fruit SSC and fresh weight (e.g., no stress fruit 11.2% SSC, weight 1180 g; stress fruit 8.8% SSC, weight 990 g). Maintaining plants free of water stress from flowering through to the end of harvest is recommended to maximise yield and fruit quality.

Free access

D.J. Gray, D.W. McColley, and Michael E. Compton

A protocol for high-frequency somatic embryogenesis in Cucumis melo L. was developed using `Male Sterile A147 as a model cultivar. Basal halves of quiescent seed cotyledons were cultured on embryo induction (EI) medium containing concentration ranges of the auxin 2,4-D and the cytokinins BA, Bin, TDZ, or 2iP before transfer to embryo development (ED) medium. Medium with 2,4-D at 5 mg·liter-1 and TDZ at 0.1 mg·liter-1 was superior, with 49% of explants responding and an average of 3.3 somatic embryos per explant (6.8 somatic embryos per responding explant). More explants produced embryos when incubated on EI medium for 1 or 2 weeks (30% and 33%) than for 3 or 4 weeks or with no induction. However, 2 weeks was 2.9 times better than 1 week in terms of number of embryos per explant. One week of initial culture in darkness, followed by a 16 hour light/8 hour dark photoperiod, produced more responding explants (26%) than two or more weeks in darkness or no dark period at all; but 1 and 2 weeks of darkness resulted in a similar number of embryos per explant (2.1 and 2.8). Sucrose concentration in EI and ED media had a highly significant effect on embryo induction and development. EI medium with 3% sucrose resulted in more embryogenic explants than EI medium with 1.5% or 6% sucrose. However, treatments with 3% sucrose in EI medium and 3% or 6% sucrose in ED medium produced significantly more embryos per explant (8.5 and 11.9) than other treatments. Treatments did not affect embryo induction directly and regeneration per se but, instead, frequency and efficiency of somatic embryo development. The optimal treatments were tested with 51 other commercial varieties. All varieties underwent somatic embryogenesis, exhibiting a response of 5% to 100% explant response and 0.1-20.2 embryos per explant. Chemical names used: N-(phenylmethyl)-lH-purin-6-amine (benzyladenine or BA); N-(2-furanylmethyl)-lH-purin-6-amine (kinetin or BIN); N-phenyl-N'-1,2,3-thiadiazol-5-ylurea (thidiazuron or TDZ); N-(3-methyl-2-butenyl)-lH-purin-6-amine (2iP); (2,4-dichlorophenoxy) acetic acid (2,4-D).